簡易檢索 / 詳目顯示

研究生: 廖廷暉
論文名稱: 沉浸邊界法於彈性邊界流場之數值分析
Numerical simulations of flow with elastic boundary using immersed boundary method
指導教授: 林昭安
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 79
中文關鍵詞: 沉浸邊界法
外文關鍵詞: Immersed boundary method, Immersed interface method
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis presents two methods for simulating flows over or inside complex elastic boundary. Scheme A is based on the feedback forcing concept, and scheme B is based on the immersed interface method. The immersed boundary generally dose not coincide with the grid point and these forcing procedures involve an interpolation scheme, since the boundary condition can be implemented on Eulerian grid directly. Scheme A is a more convenient method to simulate the elastic boundary problem. Its advantage is that the forcing value can be directly obtained form Lagrangian makers, but there is a smearing phenomenon on pressure field near interface. The smearing phenomenon will cause incorrect velocity at interface. Scheme B can determine the
    sharp flow field, especially for pressure field. For leakage problem, scheme B always has better performance, because the velocity near interface can be evaluated more
    correctly. A smooth curve is an important effect on stability. If the Lagrangian makers distribution isn't uniform, the force distribution can't be evaluated well. Here, we use periodic cubic spline to reconstruct Lagrangian makers with constant arc length and Fourier fitering to smooth the curve throughout each time step after moving boundary location. Numerical experiments also show that the stability limit can be improved if the distribution of Lagrangian makers is uniform. Four different test problems are simulated using present schemes, and scheme B has better performance.


    This thesis presents two methods for simulating flows over or inside complex elastic boundary. Scheme A is based on the feedback forcing concept, and scheme B is based on the immersed interface method. The immersed boundary generally dose not coincide with the grid point and these forcing procedures involve an interpolation scheme, since the boundary condition can be implemented on Eulerian grid directly. Scheme A is a more convenient method to simulate the elastic boundary problem. Its advantage is that the forcing value can be directly obtained form Lagrangian makers, but there is a smearing phenomenon on pressure field near interface. The smearing phenomenon will cause incorrect velocity at interface. Scheme B can determine the
    sharp flow field, especially for pressure field. For leakage problem, scheme B always has better performance, because the velocity near interface can be evaluated more
    correctly. A smooth curve is an important effect on stability. If the Lagrangian makers distribution isn't uniform, the force distribution can't be evaluated well. Here, we use periodic cubic spline to reconstruct Lagrangian makers with constant arc length and Fourier fitering to smooth the curve throughout each time step after moving boundary location. Numerical experiments also show that the stability limit can be improved if the distribution of Lagrangian makers is uniform. Four different test problems are simulated using present schemes, and scheme B has better performance.

    Abstract i List of Figures iv List of Tables vii 1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Objective and Motivations . . . . . . . . . . . . . . . . . . . . . . . . 11 2 The Methodology of Immersed Boundary Technique 13 2.1 Mathematical Formulations . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 The Forcing Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Scheme A : Feedback Forcing Strategy . . . . . . . . . . . . . 15 2.3.2 Scheme B : Piecewise Integral Strategy . . . . . . . . . . . . . 16 2.3.3 Identification of Forcing Points . . . . . . . . . . . . . . . . . 20 2.4 The Calculation of Force Density . . . . . . . . . . . . . . . . . . . . 21 2.5 Evaluation of Boundary Moving Velocity . . . . . . . . . . . . . . . . 23 2.5.1 Periodic Cubic Spline Interpolation . . . . . . . . . . . . . . . 23 2.5.2 Reconstructing Lagrangian Markers Distribution . . . . . . . . 24 2.6 Numerical Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6.1 Discretization of the Transport Equations . . . . . . . . . . . 25 2.6.2 Fractional Step Method . . . . . . . . . . . . . . . . . . . . . 28 2.7 The Full Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . 31 3 Numerical Simulations and Results 38 3.1 An Interface Problem with a Constant Jump in the Pressure . . . . . 38 3.2 Flow Induced by a Relaxing Balloon . . . . . . . . . . . . . . . . . . 39 3.2.1 Unsteady simulation for the relaxing balloon . . . . . . . . . . 40 3.2.2 Comparison of leakage problem . . . . . . . . . . . . . . . . . 41 3.2.3 Stability test . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3 Force generated by Spring Force and Bending Force . . . . . . . . . . 42 3.3.1 Unsteady simulation for the relaxing balloon . . . . . . . . . . 43 3.3.2 Comparison of leakage problem . . . . . . . . . . . . . . . . . 44 3.3.3 Stability test . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 The Deformation of Liquid Drops . . . . . . . . . . . . . . . . . . . . 45 3.4.1 Drop deformation . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.4.2 Streamline and vorticity field . . . . . . . . . . . . . . . . . . 46 4 Conclusion 47 4.1 The conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5 Figures & Tables 50

    [1] Lin CH, Lin CA. Simple high-order bounded convection scheme to model
    discontinuities. AIAA J. 1997;35:563.
    [2] Ye T, Mittal R, Udaykumar HS, Shyy W. An accurate Cartesian grid method
    for viscous incompressible flows with complex immersed boundaries. J. Comp.
    Phys. 1999;156:209.
    [3] Li Z. The Immersed Interface Method - Numerical Approach for Partial
    Di®erential Equations with Interfaces. Ph.D. thesis University of Washington
    1994.
    [4] Li Z. A note on immersed interface methods for three dimensional elliptic
    equations. Comput. Math. Appl. 1996;31:9.
    [5] LeVeque RJ, Li Z. The immersed interface method for elliptic equations
    with discontinuous coe±cients and singular sources. SIAM J. Numer. Anal.
    1994;31:1019.
    [6] LeVeque RJ, Li Z. Immersed interface method for Stokes °ow with elastic
    boundaries or surface tension. SIAM J. Sci. Comput. 1997;18:709.
    [7] Andreas Wiegmann, Kenneth P. Bube. The immersed interface method for
    nonlinear differential equations with discontinuous coe±cients and singular
    sources. SIAM J. Numer. Anal. 1998;35:177.
    74
    Bibliography 75
    [8] Andreas Wiegmann, Kenneth P. Bube. The explicit-jump immersed interface
    method: ‾nite di®erence methods for PDEs with piecewise smooth solutions.
    SIAM J. Numer. Anal. 2000;37:827.
    [9] Aaron L. Fogelson, James P. Keener. Immersed interface method for Neumann
    and related problems in two and three dimensions. SIAM J. Sci. Comput.
    2000;22:1630.
    [10] Li Z. An overview of the immersed interface method and its applications.
    Taiwanese J. Math. 2003;7:1.
    [11] Calhoun D. A Cartesian grid method for solving the two-dimensional
    streamfunction-vorticity equations in irregular regions. J. Comp. Phys.
    2002;176:231.
    [12] Li Z, Wang C. A fast finite difference method for solving Navier-Stokes
    equations of irregular domains. Commun. Math. Sci. 2003;1:180.
    [13] Li Z, Lai MC. The immersed interface method for the NavierVStokes equations
    with singular forces. J. Comp. Phys. 2001;171:822.
    [14] Le DV, Khoo BC, Peraire J. An immersed interface method for the
    incompressible Navier-Stokes equations in irregular domains. Proceedings of
    the third MIT conference on computational fluid and solid mechanics. Elsevier
    Science 2005.
    [15] Li Z. An overview of the immersed interface method and its applications.
    Taiwanese J. Math. 2003;7:1.
    [16] Peskin CS. Flow patterns around heart valves: a numerical method. J. Comp.
    Phys. 1972;10:252-271.
    [17] Peskin CS. The fluid dynamics of heart valves: Experimental, theoritiacal and
    computational methods. Annual Review of Fluid Mechanics 1982;14:235.
    Bibliography 76
    [18] Beyer RP, LeVeque RL. Analysis of a one-dimensional model for the immersed
    boundary method. SIAM J. Numer. Anal. 1992;29:332.
    [19] Lai MC, Peskin CS. An immersed boundary method with formal second order
    accuracy and reduced numerical viscosity. J. Comp. Phys. 2000;160:705.
    [20] Peskin CS, Printz BF. Improved volume conservation in the computation of
    flows with immersed elastic boundaries. J. Comp. Phys. 1993;105:33.
    [21] Cortez R, Minion M. The blob projection method for immersed boundary
    problems, J. Comp. Phys. 2000;161:428.
    [22] Mohd-Yusof J. Combined immersed boundary/B-Spline method for simulations
    of flows in complex geometries in complex geometries CTR annual research
    briefs. NASA Ames/Stanford University 1997.
    [23] Verzicco R, Mohd-Yusof J, Orlandi P, DHaworth D. Large eddy simulation
    in complex geometry con‾gurations using boundary body forces. AIAA J.
    2000;38:427.
    [24] Fadlun EA, Verzicco R, Orlandi P, Mohd-Yusof J. Combined immersed-
    boundary finite-difference methods for threedimensional complex flow
    simulations. J. Comp. Phys. 2000;161: 30.
    [25] Goldstein D, Handler R, Sirovich L. Modeling a no-slip flow with an external
    force field. J. Comp. Phys. 1993;105:354.
    [26] Goldstein D, Hadler R, Sirovich L. Direct numerical simulation of turbulent
    flow over a modeled riblet covered surface. J. Fluid Mech. 1995;302:333.
    [27] Lima E Silva ALF, Silveira-Neto A, Damasceno JJR. Numerical simulation of
    two-dimensional flows over a circular cylinder using the immersed boundary
    method. J. Comp. Phys. 2003;189:351.
    Bibliography 77
    [28] Tu C, Peskin CS. Stability and instability in the computation of flows with
    moving immersed boundaries, SIAM J. Sta. Comput. 1992;13:70.
    [29] John M. Stockie, Brian R. Wetton. Analysis of stiffness in the immersed
    boundary method and implications for time-stepping schemes, J. Comp. Phys.
    1999;154:41.
    [30] Roma AR, Peskin CS, M.J. Berger. An adaptive version of the immersed
    boundary method, J. Comp. Phys. 1999;153;509.
    [31] Zhu L, Peskin CS. Simulation of a flapping fiexible filament in a flowing soap
    film by the immersed boundary method, J. Comp. Phys. 2002;179:452.
    [32] Kim J, Kim D, Choi H. An immersed-boundary finite-volume method for
    simulations of flow in complex geometries. J. Comp. Phys. 2001;171:132
    [33] Balaras E. Modeling complex boundaries using an external force field on fixed
    Cartesian grids in large-eddy simulations, Computer & Fluids 2004;33:375.
    [34] Udaykumar HS, Mittal R, Rampunggoon, Khanna A. A sharp interface
    cartensian grid method for simulating flows with complex moving boundaries.
    J. Comp. Phys. 2001;174:345
    [35] Yang J, Balaras E. An embedded boundary formulation forlarge eddy
    simulation of turbulent flows interacting with moving boundaries. J. Comp.
    Phys. 2006;215:12
    [36] Sheth KS, Pozrikidis C. Effect of inertia on the deformation of liquis drops in
    simpl shear flow. Computer & Fluids 1995;24:101
    [37] Pozrikidis C. Effect of membrane bending stiffness in the deformation of
    capsules in simple shear flow. J. Fluid Mech. 2001;440:269
    Bibliography 78
    [38] Lee J, Pozrikidis C. Effect of surfactant on the deformation of drops and
    bubbles in Navier-Stokes flow. Computer & Fluids 2006;35:43
    [39] Su SW, Lai MC, Lin CA. A immersed boundary technique for simulating
    complex flows with rigid boundary. Computer & Fluids 2007;36:313.
    [40] Kim Y, Peskin CS. Penalty immersed boundary method for an Elastic
    Boundary with Mass. Phys. Fluids 2007;19:053103.
    [41] Kim Y, Peskin CS. 3-D parachute simulation by the penalty immersed
    boundary method, SIAM J. Sci. Comput. in press.
    [42] Li Z, Lai MC. A remark jump condition s for the three-dimensional Navier-
    Stokes equations involving immersed moving membrane. App. Mathe. Let.
    2001;14;149.
    [43] Lee L, LeVeque RJ. An immersed interface method for incompressible
    Navier - Stokes equations. SIAM J. Sci. Comput. 2003;25:832.
    [44] Xu S , Wang ZJ. Systemmatic derivation of jump conditions for the immersed
    interface method in three dimensional flow simulation. J. Comp. Phys.
    2006;216:454.
    [45] Xu S , Wang ZJ. An immersed interface method for simulating the interaction
    of a fluid with moving boundaries. SIAM J. Sci. Comput. 2006;27:1948.
    [46] Harlow FH and Welsh JE. Numerical calculation of time-dependent viscous
    incompressible flow of fiuid with a free surface. Phys. Fluids 1965;8:2181.
    [47] Choi H, Moin P, Effects of the computational time step on numerical solutions
    of turbulent flow. J. Comp. Phys. 1993;113:1
    [48] Chorine AJ. Numeriacal solution of the Navier-stokes equations. Math. Comp.
    1968;22:745.
    Bibliography 79
    [49] H. A. Van den Vorst, Sonneveld P. CGSTAB, A more smoothly converging
    variant of CGS. Technical Report 90-50, Delft University of Technology 1990.
    [50] Ghia U, Ghia KN, and Shin CT. High-Re solutions for incompressible flow
    using the Navier-Stokes Equations and a multi-grid method. J. Comp. Phys.
    1982;48:387.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE