簡易檢索 / 詳目顯示

研究生: 張宇舜
Yu-Shun Chang
論文名稱: 奈米壓印技術應用於表面聲波元件之研究
The Study of Nano Imprint Technology on Surface Acoustic Wave Device
指導教授: 葉鳳生
Fon-Shan Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 115
中文關鍵詞: 奈米壓印技術表面聲波元件氮化鋁薄膜化學氣相沉積三甲基鋁
外文關鍵詞: Nano Imprint Technology, SAW, AlN thin film, CVD, TMAL
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的在於表面聲波元件的製程,由簡單的RTA-MOCVD系統,以不破真的方式成功地在sapphire基板上鍍製壓電層AlN(002)和電極層鋁膜,再以奈米接觸式壓印(nano-contact imprint)方式做出IDT結構以達低成本SAW Filter的製作。

    首先,為了找出最佳條件,我們混合precursor 三甲基鋁(TMAL)和NH3以不同氣體流量比1:10~1:25,在溫度850℃~950℃、反應壓力0.6~4torr,在sapphire上鍍製氮化鋁薄膜,並且也使用TMAL當作source,在溫度500℃~600℃於SiO2上沉積鋁膜。我們由XRD、XPS、Auger分析可以得知氮化鋁和鋁膜的結晶特性、元素組成以及原子濃度百分比。

    第二部份,我們備製線寬150nm和200nm其線寬與線距為1:1、1:10 的模仁,將aminosilance沾印在模仁上,然後使用奈米接觸式壓印技術將aminosilane轉印到鋁膜上。打O2 plasma在鋁膜上,以增強aminosilance和鋁膜之間的adhesion。使用Nanonex-2000機台,試以不同壓印壓力15~25psi,在溫度100℃、時間30sec的條件下來完成壓印技術。我們使用AFM和SEM來觀察轉印後aminosilance的圖形。

    最後,我們使用aminosilance當蝕刻阻擋層,來定義鋁線圖形。使用RIE-200L,通入氣體Cl2、BCl3和N2做乾式蝕刻後,我們可以得到IDT奈米鋁線。藉由AFM和SEM量測,我們可以得到蝕刻後鋁線的寬度和高度。


    The object of this thesis is the fabrication process of SAW device. In order to fabricate low-cost SAW filter, we used a simple RTA-MOCVD system to successively deposit piezoelectric AlN(002) film and aluminum electrodes on sapphire substrate without breaking vacuum, and fabricated IDT structure by nano-contact imprint technique.
    Firstly, the precursor TMAL is mixed with NH3 at various rate 1:10~1:25 with temperature 850℃~950℃ at operating pressure 0.6~4 torr to deposit aluminum nitride thin film on sapphire substrate and find out the optimal condition. TMAL is also used to deposit aluminum films on SiO2 at temperature 500℃~600℃. The aluminum nitride and aluminum films are analyzed from XRD、XPS、Auger in order to crystalline properties、film composition and atomic concentration percentage.
    Secondly, we prepared line width:space=1:1 and 1:10 molds with line width=150、200nm to transfer ink aminosilance on the mold. The nano-contact printing technique was developed to transfer aminosilane on aluminum film. The O2 plasma was applied on Al film to enhance the adhesion between Al film and aminosilance. The imprint pressure 15~25psi at temperature 100℃ for 30sec by Nanonex-2000 was performed from contact printing process. AFM and SEM were used to observe the aminosilance transferred patterns.
    Finally, we used aminosilance as the etching mask to pattern Al line. After dry etching with gas Cl2、BCl3 and N2 by RIE-200L we fabricated IDT Al nano-wire. The width and height of Al line was observed from AFM and SEM.

    目錄 第一章 緒論. . . . . . . . . . . . . . . . . .. . . . .1 第二章 元件及材料簡介. . . . . . . . . . . . . . . . . 9 2-1 表面聲波元件基本原理. . . . . . . . . . . . . .9 2-1-1 簡介. . . . . . . . . . . . . . . . . . . . . 9 2-1-2 表面聲波與壓電效應. . . . . . . .. . . . . . 10 2-1-3 基本型表面聲波濾波器. . . . .. . . . . . . . 13 2-2 化學氣相沈積原理. . . . . . . . . . . . . . .14 2-2-1 鋁薄膜熱裂解機制. . . . . . . . . . . .15 2-2-2 氮化鋁薄膜反應機制. . . . . . . . . . .16 2-2-3 層流(laminar)與亂流(turbulent)反應機制.16 2-3 氮化鋁之結構與特性. . . . . . . . . . . . . .18 2-4 藍寶石基板. .. . . . . . . . . . . . . . . . 20 2-5 HSQ 材料結構. . . . . . . .. . . . . . . . . 23 2-6 ink材料. . . . . . . . . . . . . . . . . . . 24 第三章 物理量測. . . . . . . . . .. . . . . . . . . ..26 3-1 歐傑電子能譜(AES). . . . . . . . . . . . .26 3-2 X光繞射(XRD). . . . . . . . . . . . . . .29 3-3 原子力探針顯微鏡(AFM). . . . . . . . . . 32 3-4 掃描式電子顯微鏡分析(SEM) . . . . . . . . .36 3-5 光電子能譜分析(XPS). . . . . . . . . . . . .38 第四章 實驗. . . . .. . . . . . . . . . . .. . . . . .40 4-1 表面聲波元件設計. . . . . . . . . . . . . . .41 4-2 表面聲波元件中IDT製作流程. . . . . . . . . . 42 4-3 化學氣相沈積鍍膜.. . . . . . . . . . . . . . 44 4-3-1 RTA-MOCVD系統. . . . . . . . . . . . . . 44 4-3-2 鋁膜鍍製. . . . . . . . . . . . . . . . 50 4-3-3 氮化鋁薄膜鍍製. . . . . . . . . . . . . .54 4-4 壓印微影實驗. . .. . . . . . . . . . . . . . 55 4-4-1 模仁製作. . . . . . . . . . . .. . . . 56 4-4-1-1 HSQ的鍍製. . . . . . . . . .. . . . . . .58 4-4-1-2 模仁的微影技術. . . . . . . . . . . .58 4-4-2 奈米接觸壓印實驗. . . . . . . . . . . . .59 4-4-2-1 ink的製備. . . .. . . . . . . . . . . .61 4-4-2-2 O2 plasma對鋁薄膜的表面處理. . . . . .62 4-4-2-3 ink旋塗在Si wafer上的流程. . . . . . .63 4-4-2-4 模仁沾 ink. . . . . . . . . . . . . . 64 4-4-2-5 接觸轉印製程. . . . . . .. . . . . . .65 4-5 奈米鋁線的製作. . . . . .. . . . . . . . . . . 66 4-5-1 ink加熱硬烤處理. . . . . . . . . . . . . 66 4-5-2 蝕刻定義奈米鋁線. . . . . . . . . . . . .67 4-5-2-1 乾式蝕刻奈米鋁線. . . . . . . . . . .67 4-5-2-2 溼式蝕刻奈米鋁線. . . . . . . . . . .69 4-6 量測. . . . . . . . . . . . . . . . . . . . 70 4-6-1 厚度量測(α-step) . . . .. . . . . . . . .70 4-6-2 歐傑電子能譜,XRD. . . . . . . . . . . .70 4-6-3 原子力顯微鏡(AFM) . . . . . . . . . . . .71 4-6-4 掃描式電子顯微鏡分析(SEM) . . . . . . . .71 4-6-5 光電子能譜分析(XPS) . . . . . . . . . . .71 第五章 實驗結果與討論. . . . .. . . . . . . . . . . . 72 5-1 鋁薄膜特性分析. . . . . . . . . . . . . . .72 5-1-1 XRD分析 .. . . . . . . . . . . . . . . .73 5-1-2 歐傑電子分析. . . . . . . . . . . . . . .78 5-1-3 光電子能譜分析. . . . . . .. . . . . . . 84 5-2 氮化鋁薄膜特性分析. . . . . . . . . . . . . 88 5-2-1 XRD分析. . . . . . . . . . . . . . . . .88 5-2-2 SEM分析. . . . . . . . . . . . . . . . 93 5-3 接觸壓印實驗結果. . . . . . .. . . . . . . . 97 5-3-1 壓印實驗結果分析. . . . . . . . . . . . .97 5-3-2 鋁線的蝕刻結果. . . . . . . . . . . . . 101 5-3-2-1 鋁線的乾蝕刻結果. . . . . . . . . . .101 5-3-2-2 鋁線的溼蝕刻結果. . . . . . . . . . .102 第六章 結論. . . . . . . . . . . . . . . . . . .. . 108 Reference. . . . . . . . . . . . . . . . . . . . . . . 111

    [1] R. M. White and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves”, Appl. Phys. Lett. Vol.17, pp.314-316, (1965).
    [2] Y. Xia, G. M. Whitesides, Angew. Chem. Int.
    Vol.37,pp.550-575,1998.
    [3] C.M. Sotomayor Torresa, , S. Zankovych, J. Seekamp, A.P.Kam, C. Clavijo Ceden˜o, T. Hoffmann, J. Ahopelto, F.Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M.V.Maximov, B. Heidari, Mater. Sci. Eng. C Vol.23, 23-31, 2003.
    [4] M. Colburn, et al., "Step-and-flash Imprint Lithography: A new Approach to High Resolution Patterning," Proc. of SPIE, Vol.3676, pp.379, 1999.
    [5] K. Tsubouchi, K. Sugat, N. Mikoshiba, ”Zero temperature coefficient surface acoustic wave devices using epitaxial AlN films”, IEEE Ultrasonics Symposium, pp. 340-345, 1982.
    [6] Chang-Woo Nam, Kyu-Chul Lee, “Structural properties and
    frequency response of AlN thin film surface acoustic wave device”, Science and Technology, vol. 1, pp. 206-204, 2001.
    [7] S. Tomabechi, S. Kameda, K. Masu, K. Tsubouchi, ”2.4 GHz front-end multi-track AlN/a-Al2O3 SAW matched filter”, IEEE Ultrasonics Symposium, vol. 1 ,pp. 73-76, 1998.
    [8] C. Caliendo, G. Saggio, P. Verardi, E. Verona, “Piezoelectric AlN film for SAW devices applications ”, IEEE Ultrasonics Symposium, vol.16, pp. 249-252, 1993.
    [9] Cinzia Caliendo, Patrizia Imperatori, “Structural, optical, and acoustic characterization of high-quality AlN thick films sputtered on Al2O3(0001) at low temperature for GHz-band electroacoustic devices applications”, Journal of Applied Physics, volume96. number5.2004.
    [10] M. B. Assouar, O. Elmazria, L. Le Brizoual, P. Alnot, “Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices”, Diamond and Related Materials 11(2002) 413-417.
    [11] J. Meinschien, F. Falk, R. Hergt, H. Stafast ,“Distinct orientation of AlN thin films deposited on sapphire substrates by laser ablation“,Appl. Phys. A 70, 215-218(2000).
    [12] Xu-Qiang Shen, Mitsuaki Shimizu and Hajime Okumura, “Impact of Vicinal Sapphire (0001) Substrates on the High-Quality AlN Films by Plasma-Assisted Molecular Beam
    Epitaxy”, Jpn. J. Appl. Phys. Vol. 42 (2003) pp.L1293-L1295.
    [13] Q. S. Paduano, D. W. Weyburne, J. Jasinski, Z. Liliental-Weber, “Effect of initial process conditions on the structural properties of AlN films”, Journal of Crystal Growth 261 (2004) 259-265.
    [14] Y. A. Xi, K. X. Chen, F. Mont, J. K. Kim, E. F. Schubert, C. Wetzel, W. Liu, X. Li and J. A. Smart, “Optimization of High-Quality AlN Epitaxially Grown on (0001) Sapphire by Metal-Organic Vapor-Phase Epitaxy”, Journal of Electronic Materials, Vol. 36, No.4, 2007.
    [15] M. Clement, L. Vergara, J. Olivares, E. Iborra, J.Sangrador, A.Sanz-Herv and C. Zinck, ”SAW and BAW Response of c-axis AlN Thin Films Sputtered on
    Platinum”,2004 IEEE International Ultrasonics,
    Ferroelectrics and Frequency Control Joint 50th Anniversary Conference.
    [16] Soo Ho Kim, Kwang Hoon Lee, Dong-Joo Kim and Young Soo
    Yoon, ”Frequency responses of an AlN/IDT/Si surface acoustic wave device based on AlN thin films with different grain sizes”, Journal of Ceramic Processing Research. Vol. 8, No. 2, pp. 125~128 (2007).
    [17] M. B. Assouar, O. Elmazria, M. El Hakiki, P. Alnot and C. Tiusan, ”Low temperature AlN thin films growth for layered structure SAW and BAW devices”, 2004 IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference.
    [18] Lord Rayleigh, “On waves propagated along the plane surface of an elastic solid,” Proc. London Math. Soc., Vol. 17, pp. 4, 1885.
    [19] R. M. White, and F. W. Voltmer, “Direct piezoelectric coupling to surface elastic waves,” Appl. Phys. Lett. 7, pp. 314-316, 1965.
    [20] J. J. Campbell and W. R. Jones, “A method for estimation estimation optical crystal cuts and propagation directions for excitation of piezoelectric surface waves,” IEEE Trans. Son. Ultrason, Vol. 15,1968.
    [21] H. Fahmy and E. L. Adler, “Propagation of acoustic surface waves in Multilayers A matrix description”, Appl. Phy. Lett., Vol. 22, No. 10, pp.495-497, 1973.
    [22] T.Moriizumi,A.Saitou,T.Nomura, “Multi-channel SAW chemical sensor using 90 MHz SAW resonator and partial casting molecular films,” IEEE Ultrasonics Symposium,P499-502, 1994.
    [23] V.Hinrichsen,G. Scholl,M.Schubert,T.Ostertag, “Online monitoring of high-voltage metal-oxide surge arresters by wireless passive surface acoustic wave (SAW) temperature sensors,” Eleventh International Symposium,P238-241, 1999.
    [24] S.Ballandras,W.Daniau,G. Martin,P.Berthelot, “Wireless temperature sensor using saw resonators for immersed and biological applications,”Eleventh
    International Symposium, pp. 445-448, 2002.
    [25] R. S. Falconer, R. Lec, J. F. Vetelino, Z. Xu, “Optimization of a SAW metaloxide semiconductor gas sensor,” IEEE Ultrasonics Symposium, pp.585-590, 1989.
    [26] G. Watson, W. Horton, E. Staples, “Gas chromatography utilizing SAW sensors,” IEEE Ultrasonics Symposium, pp. 305-309, 1991.
    [27] M. Rapp,H. Gemmeke, J. Reichert,A.Voigt, “Analytical microsystem for organic gas detection based on SAW
    devices,” IEEE Ultrasonics Symposium, pp. 619-622, 1994.
    [28] 吳朗,“電子陶瓷-壓電”,全欣科技圖書,台北,83 年。
    [29] 汪建民,“強介電陶瓷薄膜專題緒論”,工業材料107 期,
    pp.44-48,1995。
    [30] P. Luginbuhl, S. D. Collins, G. A. Racine, M. A. Gretillat, N. F. De Rooij, K. G. Brooks, et. al. “Ultrasonic flexural Lamb-wave actuators based on PZT thin film” Sensors and Actuators A: Physical, Volume: 64, Issue: 1, January 1, 1998, pp. 41-49.
    [31] R. B. Stocks and J. D. Crawfold, “X-Band Thin Film Acoustic Filters on GaAs ” IEEE Tans. Microwave Theory Tech., vol.41, July 1993,pp.1075-1080.
    [32] C. K. Campbell, “Chapter 3: Principles of linear-phase SAW filter design”, Surface acoustic wave devices for mobile and wireless communication, 1998.
    [33] T. R. Gow, R. Lin, L. A. Cadwell, F. Le, A. L. Backman, and R. I. Masel, “Decomposition of
    Trimethylaluminum on Si(100)”,Chemistry of Materials 1989, 1, 406-411.
    [34] C. Soto, V. Boiadjiev and W. T. Tysoe, ”Spectroscopic Study of AlN Film Formation by the Sequential Reaction of Ammonia and Trimethylaluminum on Alumina”, Chem. Mater. 1996, 8, 2359-2365.
    [35] C. Morosanu, T. A. Stoica, T. F. Stoica, D. Necsoiu and M. Popescu:“Optical, Electrical and structural properties of AlN thin films ”,Semiconductor Conference, pp. 193-186, 1995.
    [36] E. Janczak-Bienk, H. Jensen and G. Sorensen, Mater. Sci. and Eng.A140, p. 696, 1991.
    [37] Kiyoshi Kaya, Hiroshi Takahashi, Yoshihiko Shibata, Yasuhito Kanno and Toshio Hirai, “Synthesis and Surface Acoustic Wave Properties of AlN Thin Films Fabricated on (001) and (110) Sapphire Substrates Using Chemical Vapor Deposition of AlCl3-NH3 System”, Jpn. J. Appl. Phys. Vol. 36(1997) pp. 2837-2842.
    [38] C.C. Yang、W.C. Chen, J. Mater. Chem., 12, 1138-1141(2002).
    [39] H .C . Scheer ,H . Schulz, Microelectronic Engineering, 56, 311– 332 (2001).
    [40] 邱昱維、楊子寬、黃紀嚴, The Research of Coating Mode between the Silane Coupling Agent and Nano-Alumina Powder, 第二屆資源工程研討會論文集。
    [41]N-(3-(TRIMETHOXYSILYL)PROPYL)ETHYLENEDIAMINE (AEAPTMS),SID Initial Assessment Report For SIAM 17,2003.
    [42] Pascal Gallo, Benoit Viallet, Emmanuelle Daran, Chantal Fontaine, Applied Physics Letter 87, 183111 (2005).
    [43] Shi-Woo Rhee, “Chemical Vapor Deposition of Aluminum for ULSI Applications”, Korean J. of Chem. Eng., 12(1), 1-11 (1995).
    [44] 黃柏翔, “表面聲波元件的製程”, 國立清華大學電子工程研究所碩士論文(2007)。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE