簡易檢索 / 詳目顯示

研究生: 李嘉同
Lee, Chia-Tung
論文名稱: 體外肝臟組織與仿微血管之微流道系統重建
In Vitro Liver Reconstruction by Mimicking Blood Capillary via Microfluidic Approach
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員: 徐琅
盧向成
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 63
中文關鍵詞: 組織工程微流體晶片仿肝臟組織仿微血管工程
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In recent years, liver disease has been one of the most important cause of death, such as liver cancer, cirrhosis, etc. It is believed that there is correlation with dining culture and lifestyle. Many liver diseases are very hard to heal completely. For this reason, many medical research teams and association are working on the issues engineering related to liver disease.
    Liver is an important organ in the human body. It can metabolize toxins inside the body and resist bacterial invasion into our body. Therefore, a variety of physiological functions can be operated normally. If the lesions occur in the liver, it will result in impair of many physiological functions. There are two major problems for the studies of liver-related disease. (a) It is hard to monitor the human liver disease inside the human body in real-time. (b) It is hard to test the drug in human body because it would get many legal and ethical problems. Therefore, there are many people trying to mimic the real liver in vitro. It is easy to observe and study the effects of new drugs and their development. Thus liver tissue is extremely complex and performs over hundreds of functions. It is our goal to mimic the real liver tissue in this research.
    This research takes advantage of technology of BioMEMS (Bio MicroElectroMechanical Systems) and microfluidic chip technique to mimic the liver tissue structure, the metabolism mechanism and the blood capillary. By this approach, we develop a functional-liver-tissue-mimicking system in vitro. There are few researches which apply the blood capillary mechanism for on-organ reconstruction. This liver-chip research integrates some of the features and mechanisms of microvascular tubules. I wish that this research will bring a different perception.


    中文摘要 I CHAPTER 1.介紹 1 1.1 研究動機和背景 1 1.1.1 微機電技術與Lab on a chip 1 1.1.2 組織工程 1 1.2 文獻回顧 3 1.2.1 肝細胞之組織工程 3 1.2.1.1 肝臟結構與功能介紹 3 1.2.1.2 肝臟細胞 4 1.3.1 血管系統 5 1.3.1.1血管的結構與功能介紹 5 1.3.1.組織工程應用於仿生血管 8 1.3.1 細胞排列技術 9 1.3.1.1 黃光微影製程技術 10 1.3.1.2 微製程印刷技術 10 1.3.1.3 微流道翻膜技術 11 1.3.1.4 介電泳細胞排列技術 12 1.3.2PDMS之介紹與應用 12 1.4 動機和實驗目的 14 CHAPTER 2. 晶片設計 15 2.1 設計基礎 15 2.1.1 擴散理論 15 2.1.1.1 液相中之擴散係數 17 2.1.1.2 固相中之擴散係數 18 2.1.2 PDMS蝕刻技術 19 2.1.2.1 乾蝕刻 20 2.1.2.2 溼蝕刻 20 2.1.3 肝臟功能介紹 22 2.1.4. 血管的養分交換機制 23 2.2 設計概念 24 2.2.1 仿生微血管之微流道 26 2.2.2 仿生微血管之微流道之操作 29 2.2.3 肝臟組織培養槽之設計 30 2.2.4 肝臟組織培養槽之操作 31 2.2.5 仿生微血管之微流道的擴散模擬 33 CHAPTER 3. 微流道製程 37 3.1 製程步驟 37 3.2 製程結果 39 CHAPTER 4.實驗設計與進度 43 4.1 材料準備 43 4.1.1 細胞培養 43 4.1.2 表面改質增加細胞貼附能力 44 4.1.3 Urea Assay介紹 44 4.2 實驗架設 45 4.3 實驗結果 48 CHAPTER 5.結論 56 參考資料 57

    [1] WTEC Panel Report on Tissue Engineering Research, International Technology Research Institute, Jan, (2002).
    [2] Linda G. Griffith and Gail Naughton, “Tissue Engineering - Current Challenges and Expanding Opportunities,” Science. 295(5557), pp. 1009-14, (2002).
    [3] Scott J. Hollister, “Porous scaffold design for tissue engineering,” nature materials, Vol. 4, July 2005.
    [4] D. Metcalfe and M.W.J. Ferguson, Bioengineering skin using mechanisms of regeneration and repair, Biomaterals, 2007, 28, 5100-5113.
    [5] R.P. Lanza, R. langer and J.P. Vacanti, Principle of tissue engineering, Academic press, San Diego, 2000
    [6] C. Chung and J. A. Burdick, Engineering cartilage tissue, Adv. Drug Delivery Rev., 2008, 60, 243-262.
    [7] K. Nishida, M. Yamato, Y. Hayashida, et al, Corneal reconstruction with tissue-engineered cell sheets composed of antologous oral mucosal epithelium, N. Engl. J. Med., 2004, 351, 1187-1196.
    [8] A. Kikuchi, and T. Okano, “Nanostrutured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs,” J Control Release, 101(1-3), pp. 69-84, (2005).
    [9] Y. Nahmias, R.E. Schwartz , Verfaillie, C.M. & Odde, D.J. “Laser-Guided Direct Writing for Three-Dimensional Tissue Engineering.,” Biotechnol Bioeng. 92, 129-136, 2005.
    [10] R. Taub “Liver regeneration: from myth to mechanism.,” Nature Reviews Molecular Cell Biology 5, 836-847, 2004.
    [11] R. Langer, & J. P. Vacanti, , Tissue engineering. Science 1993, 260, 920–926.
    [12] J. R. Fuchs, , B. A. Nasseri, & J. P. Vacanti, , “Tissue engineering: a 21st century solution to surgical reconstruction,” Ann. Thorac. Surg., 72, 577-591, 2001.
    [13] J. Tsiaoussis, , P.N. Newsome, , L.J. Nelson, , P.C. Hayes, & J.N. Plevris, “Which Hepatocyte Will it be ? Hepatocyte choice for bioartifical liver support systems.,” Liver Tansplantation 7, 2-10, 2001.
    [14] D. Falconnet, , G. Csucs, , H.Michelle, & M. Textor, , “Surface engineering approaches to micropattern surfaces for cell-based assays,” Biomaterials, 27, 3044-3063, 2006.
    [15] K. Bhadriraju, & C. S. Chen, , “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discovery Today, 7, 11, 612-620, 2002.
    [16] H. Andersson, & A. van den Berg, , “Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities.,” Lab Chip, 4, 98–103, 2004.
    [17] H. Andersson, & A. van den Berg, , “Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities.,” Lab Chip, 4, 98–103, 2004.
    [18] B. D. Foy, , A. Rotem, , M Toner, , R. G. Tompkins, & M. L. Yarmush, , “A device to measure the oxygen uptake rate of attached cells: importance in bioartificial organ design.,” Cell Transplant. 3, 515-527, 1994.
    [19] L. G. Griffith, & G. Naughton, , “Tissue Engineering- Current changes and expanding opportunities.,” Science 295, 1009-1016, 2002.
    [20] G. I. Nedredal, et al., “Liver sinusoidal endothelial cells represents an important blood clearance system in pigs.,” Comp Hepatol. 2, 1, 2003.
    [21] Hu M.Y. Sielaff T.D., , S. Rao, K. Groehler, D. Olson, H.J. Mann, R.P. Remmel, R.A. Shatford, B. Amiot and W.S. Hu et al. “A technique for porcine hepatocyte harvest and description of differentiated metabolic functions in static culture.,” Transplantation 59, 1459–1463, 1995.
    [22] A.A. te Velde, N.C. Ladiges, L.M.Flendrig and R.A.Chamuleau “Functional activity of isolated pig hepatocytes attached to different extracellular matrix substrates. Implication for application of pig hepatocytes in a bioartificial liver.,” J. Hepatol. 23, 184–192, 1995.
    [23] P.G. Gregory, C.K. Connolly, M. Toner and S.J. Sullivan “In vitro characterization of porcine hepatocyte function.,” Cell Transplant. 9, 1–10, 2000.
    [24] M. Dou, G. de Sousa, B. Lacarelle, M. Placidi, P. la Porte, M. Domingo, H. Lafont and R. Rahmani, “Thawed human hepatocytes in primary culture.,” Cryobiology 29: 454–469, 1992.
    [25] D. Runge, D.M. Runge, D. Jager, K.A. Lubecki, D. Beer Stolz, S. Karathanasis, Kietzmann T., S.C. Strom, K. Jungermann, W.E. Fleig and G.K. Michalopoulos “Serum-free, long-term cultures of human hepatocytes: maintenance of cell morphology, transcription factors, and liver-specific functions.,” Biochem. Biophys. Res. Commun. 269, 46–53, 2000.
    [26] A. Werner, S. Duvar, J. Muthing, H. Buntemeyer, U. Kahmann, H. Lunsdorf and J. Lehmann “Cultivation and characterization of a new immortalized human hepatocyte cell line, HepZ, for use in an artificial liver support system.,” Ann. NY Acad. Sci. 875, 364–368, 1999.
    [27] S.M. Cascio “Novel strategies for immortalization of human hepatocytes.,” Artif. Organs 25, 529–538, 2001.
    [28] M. Louha, K. Poussin, N. Ganne, Zylberberg H., B. Nalpas, Nicolet J., F. Capron, O. Soubrane, Vons C., S. Pol, Beaugrand M, P. Berthelot, D. Franco, J.C. Trinchet, C. Brechot and P. Paterlini “Spontaneous and iatrogenic spreading of liver-derived cells into peripheral blood of patients with primary liver cancer,” Hepatology 26, 998–1005, 1997.
    [29] http://www.eecp.com.tw/knowledge03.html
    [30] http://www.niaaa.nih.gov/Resources/GraphicsGallery/Liver/lobulep295.htm
    [31] Dr.Thomas Caceci , “Cardiovascular System Arteries and Veins”.
    [32] Vander, Sherman, & Luciano’s, “Human Phusiology : the mechanisms of body function”
    [33] H. Kerdjoudj, F. Boulmedais, N. Berthelemy, H. Mjahed, H. Louis, P. Schaaf, J. C. Voegel, P. Menu. “Cellularized alginate sheets for blood vessel reconstruction”.
    [34] Scott L. Friedman, “Molecular Regulation of Hepatic Fibrosis, an Integrated Cellular Response to Tissue Injury,” THE JOURNAL OF BIOLOGICAL CHEMISTRY, Vol. 275, No. 4, Issue of January 28, pp. 2247–2250, 2000
    [35] Thomas Amann, Frauke Bataille, Thilo Spruss, Marcus Muhlbauer, Erwin Gabele, Jurgen Scholmerich, Paul Kiefer, Anja-Katrin Bosserhoff and Claus Hellerbrand, “Activated hepatic stellate cells promote tumorigenicity of hepatocellular carcinoma,” Cancer Sci, April 2009, vol. 100, no. 4, 646–653.
    [36] D. Falconnet, G. Csucs, H.M. Grandin and M. Textor, Surface engineering appoaches to micropattern surfaces for cell-based assays, Biomaterials, 2006, 27, 3044-3063.
    [37] J. El-Ali, P.K. Sorger and K.F. Jensen, Cells on chips, Nature, 2006, 442(27), 403-411.
    [38] S.N. Bhatia, M. Yarmusch and M. Toner, Controlling cell interactions by micropatterning in co-cultures:hepotocytes and 3T3 fibroblasts, J. Biomed. Mater. Res., 1997, 34, 189-199.
    [39] S.N. Bhatia, U.J. Balis, M.L. Yarmush and M. Toner. Probing heterotypic cell interactions: hepatocyte function in microfabricated co-cultures. J. Biomater. Sci. Polymer Ed., 1998, 9, 1137-60
    [40] S.N. Bhatia, U.J. Balis, M.L. Yarmush and M. Toner, Effect of cell–cell interactions in preservation of cellular phenotype: cocultivation of hepatocytes and nonparenchymal cells, FASEB, 1999, 13, 1883-1900.
    [41] B. Lon, K.E. Healy and P.E. Hockberger, A versatile technique for patterning biomolecules onto glass coverslips, J. Neurosci. Methods. 1993, 50(3), 385-397
    [42] M. Mrksich, L.E. Dike, J. Tein, D.E. Ingber and G.M. Whitesides, “Microcontact Printing on Pattern the Attachment on Mammalian Cells to Self-Assembled Monolayers of Alkanethiolates on Transparent Films of Gold and Silver,” Exp. Cell. Res., 1997, 235, 305-313.
    [43] R.S. Kane, S. Takayama, E. Ostuni, D. Ingber and G.M. Whitesdes, “Patterning proteins and cells using soft lithography,” Biomaterials, 1999, 20, 2363-2376.
    [44] G.P. Lopez, M.W. Alberts, S.L. Schreiber, et al., “Convenient methods for patterning the adhesion of mammalian cells to surfaces using self-assembled monolayers of alkanethiolates on gold.” J. Am. Chem. Soc., 1993; 115, 5877-5578.
    [45] G. P. Lopez, H. A. Biebuyck, R. Harter, A. Kumar and G. M. Whitesides, “Fabrication and imaging of two-dimensional patterns of proteins adsorbed on self-assembled monolayers by scanning electron microscopy,” J. Am. Chem. Soc., 1993, 115, 10774-10781.
    [46] C. S. Chen, M. Mrksich, S. Huang, G. M. whitesides, and D. E. Ingber, “Micropatterned surfaces for control of cell shape, position, and function,” Biotechnol. Prog., 1998, 14, 356-363.
    [47] C. S. Chen, M. Mrksich, S. Huang, G. M. Whitesides and D. E. Ingber, “Geometric control of cell life and death,” Science, 1997, 276, 1425-1428.
    [48] A. Kumar and G. M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching,” Appl. Phys. Lett., 1993, 63, 2002-2004.
    [49] R. J. Jackman, J. L. Wilbur and G. M. Whitesides, “Fabrication of submicron features on curved substrates by microcontact printing,” Science, 1995, 269(5244), 664-666.
    [50] A. Folch and M. Toner, “Cellular Micropatterns on Biocompatible Materials,” Biotechnol. Prog., 1998, 14(3), 388-392.
    [51] R. Anderson, D.T. Chiu, R.J. Jackman, O. Cherniavskaya, J.C. McDonald, et al., “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Anal. Chem. 2000, 72, 3158-3164.
    [52] S. Takayama, E. Ostuni, P. LeDuc, K. Naruse, D.E. Ingber and G.M. Whitesides, “Laminar flow: Subcellular positioning of small molecules,” Nature, 2001, 411, 1016.
    [53] M. Frenea, S.P. Faure, B.L. Pioufle, P. Coquet and H. Fujita, Positioning living cells on a high-density electrode array by negative dielectrophoresis, Mater. Sci. Eng., C, 2003, 23, 597-603.
    [54] Z. Yu, G. Xiang, L. Pan, L. Huang, Z. Yu, W. Xing and J. Cheng, Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips, Biomed. Microdevices, 2004, 6(4), 311-324.
    [55] N. Mittal, A. Rosenthal and J. Voldman, nDEP microwells for single-cell patterning in physiological medium, Lab chip, 2007, 7, 1146-1153.
    [56] D.S. Gray, J.L. Tan, J. Voldman and C.S. Chen, Dileectrophoretic registration of living cells to a microelectrode array, Biosens. Bioelectron., 2004, 19, 771-780.
    [57] D.R. Albrecht, V.L. Tsang, R.L. Sah and S.N. Bhatia, Photoand electropatterning of hydrogel-encapsulated living cell array, Lab Chip, 2005, 5, 111-118.
    [58] Wendy F. Liu, Elliot E. Hui, Sangeeta N. Bhatia, and Christopher S. Chen, Engineering Cellular Microenvironments.
    [59] J. Garra, T. Long, J. Currie, T. Schneider and R. White, M. Paranjape, Dry etching of polydimethylsiloxane for microfluidic systems
    [60] Shuichi Takayama, Emanuele Ostuni, Xiangping Qian, J. Cooper Mcdonald, Xingyu Jiang, Phil LeDuc, Ming-Hsien Wu, Donald E. Ingber, and George M. Whitesides, Topographical Micropatterning of Poly(dimrthylsiloxane) Using Laminar Flows of Liquids in Capillaries.
    [61] Anne Waugh, Allison Grant, Ross and Wilson Anatomy and Physiology in Health and Illness.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE