研究生: |
李建宏 Chien-Hung Li |
---|---|
論文名稱: |
使用溶液製程及小分子主體製備白光有機電致發光二極體 White Organic Light-Emitting Devices with a Solution-Processed and Molecular Host-Employed Emission Layer |
指導教授: |
周卓煇
Jwo-Huei Jou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 有機發光二極體 、白光 、溶液製程 、小分子 |
外文關鍵詞: | Organic Light-Emitting Device, White, Solution Process, Molecular |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種可使用溶液製程及使用小分子為主體所製作之單一發光層三波段白光有機電致發光元件 (Organic Light Emitting Diode,OLED),此發光層乃是將紅光染料 bis [2- (2’- benzothienyl)- pyridinato- N, C3’] (acetylacetonate) iridium (III) [Btp2Ir(acac)]、綠光染料 tris (2- phenylpyridine) iridium (III) [Ir(ppy)3]、及藍光染料 bis (3,5- difluoro- 2- (2- pyridyl)- phenyl- (2- carboxypyridyl) iridium (III) (FIrpic),以溶劑溶解掺雜於一小分子主體 4, 4'- bis(carbazol- 9- yl) biphenyl (CBP),經旋轉塗佈塗 (spin coating)、加熱乾燥而得;並加入電洞阻礙層 bis- (2- methyl- 8- quinolinolate)- 4- (phenylphenolato) aluminum (BAlq)。此元件結構為indium tin oxide/poly (ethylenedioxythiophene): poly (styrene sulfonic acid)/ CBP: Btp2Ir(acac): Ir(ppy)3: FIrpic / BAlq / tris (8- hydroxy- quinoline) aluminum/lithium- fluorine/aluminum。藉由改變染料的掺雜濃度,調整白光元件之發光光色,並探討染料濃度對其發光亮度、發光效率等特性之影響。
研究結果顯示,於12 wt% FIrpic、0.35 wt% Btp2Ir(acac)、0 wt% Ir(ppy)3之掺雜濃度時,得到最接近純白光的元件,其Commission International de L’Eclairage (CIE) 色座標為 (0.339, 0.350),在1680 cd/m2的亮度下,最大發光效率為2.9 lm/W;在白光範圍內,掺雜濃度為12 wt% FIrpic、0.35 wt% Btp2Ir(acac)、0.4 wt% Ir(ppy)3 之元件,其發光光光色為 (0.342, 0.390),在550 cd/m2的亮度下,最大發光效率為5.6 lm/W;當亮度從100變化到10,000 cd/m2時,所有元件之光色變化,皆小於 (0.026, 0.016)。
於掺雜濃度為12 wt% FIrpic、0.35 wt% Btp2Ir(acac)、0.2 wt% Ir(ppy)3 之白光元件中加入電洞阻礙層 BAlq,可使發光亮度由5,250 cd/m2升高為12.540 cd/m2,發光效率亦由1.3 lm/W 大幅提升至 4.2 lm/W;當施加電壓從 6 V 改變至 9 V 時,無電洞阻礙層元件之CIE色座標會從 (0.36, 0.40) 移至 (0.33, 0.45),而具電洞阻礙層之元件則僅從 (0.35, 0.37) 移至 (0.33, 0.38)。
1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lette. 51, 913 (1987).
2. J. H. Burroughes, D. C. Bradley, A. R. Brown, R. N. Marks, K. D. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature 347, 539 (1990).
3. C. Adachi, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27, L269 (1988).
4. P. E. Burrows and S. R. Forrest, Appl. Phys. Lett. 64, 2285 (1994).
5. C. Hosokawa, M. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, and T. Kusumoto, Synth. Met. 91, 3 (1997).
6. P. E. Burrows, G. GU. V. Bulovic, Z. Shen, S. R. Forrest, and M. E. Thompson, IEEE Trans. Electron Devices 44, 1188 (1997).
7. S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Breach, New York 335 (1997).
8. Z. Zhang, X. Jiang, and S. Xu, Thin Soild Films. 363, 61 (2000).
9. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 65, 815 (1994).
10. B. W. D’Andrade, R. J. Holmes, and S. R. Forrest, Adv. Mater. 16, 624 (2004).
11. M. Suzuki, S. Tokito, M. Kamachi, K. Shirane, and F. Sato, J. photopolymer Science and Technology 16, 309 (2003).
12. G. K. Ho, H. F. Meng, S. C. Lin, S. F. Horng, C. S. Hsu, L. C. Chen, and S. M. Chang, Appl. Phys. Lett. 85, 4576 (2004).
13. G. Tu, Q. Zhou, Y. Cheng, L. Wang, D. Ma, X. Jing, and F. Wang, Appl. Phys. Lett. 85, 2172 (2004).
14. X. Gong, W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses, and A. J. Heeger, Adv. Mater. 16, 615 (2004).
15. J. P. J. Markham, S. C. Lo, S. W. Magennis, P. L. Burn, and I. D. W. Samuel, Appl. Phys. Lett. 80, 2645 (2002).
16. T. D. Anthopoulos, M. J. Frampton, E. B. Namdas, P. L. Burn, and I. D. W. Samuel Adv. Mater. 16, 557 (2004).
17. P. Pope, H. P. Kallmann, and P. J. Magnante, Chem. Phys. 38, 2042 (1963).
18. P. S. Vincett, W. A. Barlow, R. A. Hann, and G. G. Robert, Solid Thin Films. 94, 171 (1982).
19. R. H. Patridge, Polymer. 24, 733 (1983).
20. S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Pat. No.4, 720, 432 (1988).
21. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 27, L713 (1988).
22. M. Era, C. Adachi, T. Tsutsui, and S. Saito, Chem. Phys. Lett. 178, 488 (1991).
23. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989).
24. R. H. Friend, J. H. Burroughes, and D. D. Bradley, US. Pat. No. 5, 247, 190 (1993).
25. J. Kido, M. Kohda, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 61, 761 (1992).
26. J. Kido, M. Kimura, and K. Nagai, Science 267, 1332 (1995).
27. J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett. 67, 2281 (1995).
28. C. C. Wu, Electronics Spectrum, 4, 4. (1998).
29. A. Dodabalapur, Bell Lab, Solid State Com. 102, 259 (1997).
30. S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 1 (1997).
31. K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, and K. Seki, J. Appl. Phys. 83, 4928 (1998).
32. M. A. Lampert and P. Mark, Current Injection in Solids, New York, Academic Press (1970).
33. S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 8 (1997).
34. S. Miyata and H. S. Nalwa, Organic Electroluminescent Materials and Devices, Gordon and Breach Science Publishers, Chap 9 (1997).
35. J. Yang and J. Shen, J. Appl. Phys. 84, 2105 (1998).
36. Z. Liu, J. Pinto, J. Soaves, and E. Pereira, Synth. Met. 122, 177 (2001).
37. K. A. Higginson, X. Zhang, F. Padaimitrakoppulos, Chem. Mater. 10, 1017 (1998).
38. S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
39. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 64, 815 (1994).
40. L. Do, E. Ham, N. Yamamoto, and M. Fujihira, Mol. Cryst. Liq. Cryst. 280, 373 (1993)
41. C . Hosokawa, H. Higashi, and T. Kusumoto, Appl. Phys. Lett. 62, 3238 (1993).
42. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 63, 2627 (1993).
43. J. Kido, K. Hongawa, K. Okuyama, and K. Nagai, Appl. Phys. Lett. 64, 815 (1994).
44. S. A. VanSlyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
45. G. Sakamoto, C. Adachi, T. Koyama, Y. Taniguchi, C. D. Merritt, H. Murata, and Z. H. Kafafi, Appl. Phys. Lett.75, 766 (1999).
46. C. Giebeler, H. Antoniadis, D. D. C. Bradley, and Y. Shirota, J. Appl. Phys. 85, 608 (1999).
47. K. Chondroudis and D. B. Mitzi, Appl. Phys. Lett. 69, 58 (2000).
48. Y. Sato, S. Ichinosawa, and H. Kanai, IEEE Journal of Selected Topics in Quantum Electronics 4, 40 (1998).
49. Y. Hamada, T. Sano, H. Fujii, Y. Nishio, H. Takahashi, and K. Shibata, Appl. Phys. Lett. 71, 23 (1997).
50. D. G. Ma, G. Wang, Y. F. Hu, Y. G. Zhang, L. X. Wang, X. B. Jing, and F. S. Wang, Appl. Phys. Lett. 82, 8 (2003).
51. H. Shirakawa, Polymer Journal 2(2), 231 (1971).
52. Fengling Zhang, Nucharee Phensrichol, and Olle Inganas, “Polymer photodiodes with micro- and nanopatterned electrodes and absorber”, European Optical Society Conference, 8 April (2002)
53. Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, “Enhanced performance of polymer light-emitting diodes using high-surface area polyaniline network electrodes”, J. Appl. Phys. 77 (2), 15 (1995).
54. Peter K. H. Ho, Magnus Granstrom, Richard H. Friend, and Neil C. Greenham, “Ultrathin Self-Assembled Layers at the ITO Interface to Control Charge Injection and Electroluminescence Efficiency in Polymer Light-Emitting Diodes”, Adv. Mater. 10, 10 (1998).
55. W. Ma, P. K. Iyer, X. Gong, B. Liu, D. Moses, G. C. Bazan, and A. J. Heeger, Adv. Mater. 17, 3 (2005).
56. H. Wu, F. Huang, Y. Mo, W. Yang, D. Wang, J. Peng, and Y. Cao, Adv. Mater. 16, 20 (2005).
57. S. Naka, K. Shinno, and H. Anada, Electrn. Trans. IEICE. 80, 1114 (1997).
58. R. W. T. Higgins, A. P. Monkman, H. G. Nothofer, and U. Scherf, Appl. Phys. Lett. 79, 6 (2001).
59. F. Li, G. Cheng, Y. Zhao, J. Feng, S. Liu, M. Zhang, Y. Ma, and J. Shen, Appl. Phys. Lett. 83, 4716 (2003).
60. Y. Duan, Y. Zhao, G. Cheng, W. Jiang, J. Li, Z. Wu, J. Y. Hou, and S. Y. Liu, Semicond. Sci. Technol. 19, L32-L34 (2004).
61. X. Gong, W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses, and A. J. Heeger, Adv. Mater. 16, 7 (2004).
62. J. T. Lim, M. J. Lee, N. H. Lee, Y. J. Ahn, C. H. Lee, D. H. Hwang, Curre. Appl. Phys. Lett. 4, 327-330 (2004).
63. H. A. A. Attar, A. P. Monkman, M. Tavasli, S. Bettington, and M. R. Bryce, Appl. Phys. Lett. 86, 121101 (2005).
64. R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, Appl. Phys. Lett. 68, 1192 (1996).
65. S. R. Forrest, R. S. Desphande, and V. Bulovic, Appl. Phys. Lett. 75, 888 (1999).
66. Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu, Appl. Phys. Lett. 80, 2782 (2002).
67. G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Liu, Y. Ma, and S. T. Lee, Appl. Phys. Lett. 82, 4224 (2003).
68. J. Kido, Organic Electroluminescence Material and Display, Japan, chap 17 (2001).
69. J. Kido, Organic Electroluminescence Material and Display, Japan, chap 23 (2001).
70. G. Li and J. Shinar, Appl. Phys. Lett. 83, 5359 (2003).
71. S. Tokito, T. Iijima, T. Tsuzuki, and F. Sato, Appl. Phys. Lett. 83, 2459 (2003).
72. G. Cheng, Y. Zhao, Y. Zhang, S. Liu, F. He, H. Zhang, and Y. Ma, Appl. Phys. Lett. 84, 4457 (2004).
73. Y. Kawamura, S. Yanagida, and S. R. Forrest, J. Appl. Phys. 92, 87 (2002).