簡易檢索 / 詳目顯示

研究生: 李俊逸
論文名稱: Study on PLD-grown SrRuO3 and Sr2RuO4 Thin Film
指導教授: 黃倉秀
洪銘輝
口試委員: 黃倉秀
洪銘輝
徐嘉鴻
郭瑞年
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 65
中文關鍵詞: X光晶體繞射脈衝雷射蒸鍍系統Sr2RuO4SrRuO3
外文關鍵詞: XRD, PLD, Sr2RuO4, SrRuO3
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在於研究經由脈衝雷射蒸鍍系統,SrRuO3與Sr2RuO4薄膜的成長。為了要解決SRO薄膜中缺少釕的問題,我們加入氧化釕的靶材並進行雙靶材沉積法來成長SRO薄膜。在成長SrRuO3¬薄膜方面,不論是使用單靶材或雙靶材的方法,都能在X光晶體繞射量測裡觀察到清楚的厚度干涉波。θ搖擺曲線的半高波寬也能夠達到0.024度。此外,我們觀察到當晶格常數從3.979 Å減低至3.938 Å時,室溫電阻率也從492.9 μΩ⋅cm到262.9 μΩ⋅cm而減少 (雙靶材成長)。
    而在Sr2RuO4薄膜方面,我們以單靶材方法,將Sr2RuO4薄膜成長在LSAT基板上,並且其室溫電阻率為166 μΩ∙cm、剩餘電阻率為11。在雙靶材方面,我們可以得到應變鬆弛的Sr2RuO4薄膜成長在SrTiO3基板上,其晶格常數與Sr2RuO4單晶塊材相近,並且在X光晶體繞射量測裡也觀察到清楚的厚度干涉波與窄的θ搖擺曲線 (半高波寬0.018度)。另一方面,在LSAT基板上成長更厚的Sr2RuO4薄膜,可以達到更好的剩餘電阻率35以及剩餘電阻3.24 μΩ∙cm。為了使Sr2RuO4薄膜達到超導,我們將試著找出最佳成長條件,以提高薄膜純度(達到更高的剩餘電阻率)。


    In this thesis, the SrRuO3 and Sr2RuO4 thin films grown by pulse laser deposition (PLD) were studied. In the SrRuO3 work, double-target deposition method was developed to solve the Ru-deficiency problem. In x-ray diffraction (XRD) measurement, clear thickness fringes around the SrRuO3 (002)c diffraction peak were observed both in single-target and double-target growth. The narrowest FWHM of the θ-rocking curve of SrRuO3 was 0.024°. In addition, with the decrease of the c-axis lattice constant from 3.979 Å to 3.938 Å, the room temperature resistivity became lower from 492.9 μΩ⋅cm to 262.9 μΩ⋅cm (double-target growth).
    In Sr2RuO4 work, we have grown the Sr2RuO4 thin film with room temperature resistivity = 166 μΩ∙cm and the residual resistivity ratio = 11 on LSAT substrate by single-target method. In double-target deposition, we have grown the Sr2RuO4 thin film on SrTiO3 substrate with well-defined thickness fringes, narrow θ-rocking curve (0.018°) and the lattice constants that are close to the bulk Sr2RuO4 single crystal in XRD measurement. We have pushed the residual resistivity ratio to 35 and residual resistivity to 3.24 μΩ∙cm by growing the Sr2RuO4 film on LSAT in double-target growth. To make the Sr2RuO4 films superconducting, we have to pay more effort to improve the purity (to achieve higher residual resistivity ratio) of the films.

    TABLE CONTENTS Chapter 1 Introduction..............................1 1.1 Research background.............................1 1.2 Motivation......................................6 1.2.1 High-quality SrRuO3 film on SrTiO3 (001)......6 1.2.2 Sr2RuO4 film on SrTiO3 (001)..................7 Chapter 2 Instrumentation and Theories..............8 2.1 Pulse laser deposition system...................8 2.2 Structural characterization by X-ray scattering.10 2.2.1 Reciprocal space..............................10 2.2.2 X-ray diffraction.............................12 2.2.3 XRD technique for single crystal..............13 2.2.4 Scherrer’s formula...........................18 2.2.5 Strain-induced peak broadening................22 2.2.6 XRD line width analysis.......................23 Chapter 3 Experimental Procedure....................25 3.1 SrRuO3 and Sr2RuO4 deposition process in PLD....25 3.2 X-ray diffraction...............................27 3.3 X-ray photoelectron spectroscopy................27 3.4 Transport property..............................28 Chapter 4 Results and Discussion....................29 4.1 High-quality SrRuO3 film grown on SrTiO3(001) by PLD ....................................................29 4.1.1 SrRuO3 film grown by single-target PLD........29 4.1.2 SrRuO3 film grown by double-target PLD........35 4.2 Sr2RuO4 film grown by PLD.......................39 4.2.1 Sr2RuO4 film grown by single-target PLD.......40 4.2.2 Sr2RuO4 film grown by double-target PLD.......53 4.3 Comparison of single-target and double-target methods and the effect on film..............................60 Chapter 5 Conclusion................................61 Reference...........................................64 Figure captions Figure 1.1 Crystal structures of Ruddlesden-Popper (RP) ruthenates series Srn+1RunO3n+1. Both Sr2RuO4 (n = 1), Sr3Ru2O7 (n = 2), Sr4Ru3O10 (n = 3) and SrRuO3 (n = ∞)....2 Figure 1.2 Transport property of bulk SrRuO3.[4]...........2 Figure 1.3 Resistivity as a function of temperature under various magnetic fields for the Sr2RuO4 film of Tokura’s group......................................................4 Figure 1.4 XRD pattern of the Sr2RuO4 film of Tokura’s group......................................................4 Figure 1.5 Resistivity versus temperature of bulk single crystal Sr2RuO4 in the a-b-plane[9]........................5 Figure 2.1 The set-up of PLD system........................9 Figure 2.2 Combine lattice and basis to construct to a crystal...................................................10 Figure 2.3 2D real lattice and reciprocal lattice. The magnitude and direction of the vector in reciprocal lattice each represents reciprocal of the d-spacing and normal direction of planes in real space.........................11 Figure 2.4 X-ray reflected by the (hkl) planes and the derivation of Bragg’s Law................................13 Figure 2.5 Construction of four-circle diffractometer with θ, 2θ, φ and χ rotation modes.........................14 Figure 2.6 Different radial scans in reciprocal space.....16 Figure 2.7 Good quality film yields narrow width rocking curve. Bad quality film yields wide width rocking curve. (the solid lines represent x-ray that is reflected, the dashed lines represent x-ray that is not reflected.)......17 Figure 2.8 Effect of crystal size on diffraction..........19 Figure 2.9 Effect of fine crystallite size on diffraction curves....................................................21 Figure 2.10 Effect of uniform and non-uniform strains (left side of the figure) on diffraction peak position and width (right side of the figure). (a) shows the unstrained sample, (b) shows uniform strain and (c) shows non-uniform strain within the volume sampled by the x-ray beam...............22 Figure 3.1 The 3D morphology image of TiO2-terminated substrate surface by AFM. Step high of each terrace is about 0.39 nm. The each layer of r.m.s. roughness is only 0.05 nm........................................................26 Figure 3.2 The simple picture of the set-up of our PLD system....................................................26 Figure 3.3 Flowchart for the double-target growth.........27 Figure 4.1 Normal scan and rocking curve of the best sample LM122 in our previous work................................30 Figure 4.2 Normal scan of LM182, LM183, LM185 and LM186. ..........................................................32 Figure 4.3 θ-rocking curve of sample LM182, LM183, LM184 and LM186.................................................33 Figure 4.4 Resistivity as a function of temperature for LM186.....................................................34 Figure 4.5 Normal scan of the samples that the RuO2/SrRuO3 laser pulse ratio was varied from 1:5 to 4:5..............36 Figure 4.6 θ-rocking curve of the samples that the RuO2/SrRuO3 laser pulse ratio was varied from 1:5 to 4:5. ..........................................................37 Figure 4.7 The relationship between room temperature resistivity and c-axis parameter of co-deposited SrRuO3 thin films.....................................................38 Figure 4.8 Resistivity versus temperature plot for the samples deposited by double-target growth.................38 Figure 4.9 Normal scan of LM205 plotted with logarithmic scale.....................................................40 Figure 4.10 JCPDS card for Sr3Ru2O7.......................41 Figure 4.11 Long-range normal scans plotted with logarithmic scale for the samples grown by single-target deposition. ..........................................................45 Figure 4.12 The detailed view of (006) peak of Sr2RuO4 in the samples grown by single-target deposition.............46 Figure 4.13 Long-range normal scans plotted with logarithmic scale for the samples grown by single-target deposition. ..........................................................49 Figure 4.14 Transport property of LM223, LM226 and LM232S.49 Figure 4.15 Long-range normal scans plotted with logarithmic scale for the samples grown by single-target deposition...50 Figure 4.16 Transport property of LM231 and LM225.........50 Figure 4.17 Transport property of LM232S and LM232L.......52 Figure 4.18 H-L mesh scan below (a) SrTiO3 (202) in LM232S and (b) LSAT (202) in LM232L..............................52 Figure 4.19 Long-range normal scans plotted with logarithmic scale for the samples grown by double-target deposition...54 Figure 4.20 The detailed view of (006) peak of Sr2RuO4 in the samples grown by double-target deposition.............55 Figure 4.21 Long-range normal scan plotted with logarithmic scale for LM229...........................................56 Figure 4.22 θ-rocking curves for SrTiO3 substrate and Sr2RuO4 film..............................................56 Figure 4.23 H-L mesh scan below SrTiO3 (202) in LM229.....57 Figure 4.24 Azimuthal scans for SrTiO3{202} and Sr2RuO4{206} reflections...............................................58 Figure 4.25 Transport property of LM229...................58 Figure 4.26 Transport property of the thicker Sr2RuO4 films grown on SrTiO3 and LSAT..................................59 Table captions Table 4.1 The growth conditions of sample LM122, LM182, LM183, LM185 and LM186....................................33 Table 4.2 The thickness, c-axis parameter, room temperature resistivity and width of rocking curve of the samples.....34 Table 4.3 The thickness, c-axis parameter, room temperature resistivity and width of rocking curve of the samples.....37 Table 4.4 The transformation from two-theta to L..........41 Table 4.5 The growth conditions of the samples grown by single-target deposition..................................44 Table 4.6 Growth conditions of the samples grown by single-target deposition. (The thickness of LM223, LM226 and LM225 was estimated by thickness fringe and the thickness of LM232 and LM231 was estimated by growth rate )..................48 Table 4.7 The growth conditions of LM210, LM213, LM215 and LM219.....................................................54

    [1] S. N. Ruddlesden and P. Popper, Acta. Cryst. 11, 54 (1958)
    [2] J. G. Bednorz and K. A. Müller, Z. Phys. B-Condensed Matter 64, 189–193 (1986)
    [3] C. B. Eom, R. J. Cava, R. M. Fleming, J. M. Phillips, R. B. van Dover, J. H. Marshall, J. W. P. Hsu, J. J. Krajewski, and W. F. Peck, Jr., Science. 258, 1766 (1992)
    [4] Allen, P. B., H. Berger, O. Chauvet, L. Forro, T. Jarlborg, A. Junod, B. Revaz, and G. Santi, Phys. Rev. B 53, 4393 (1996)
    [5] Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz and F. Lichtenberg, Nature 372, 532 (1994)
    [6] T. M. Rice & M. Sigrist, J. Phys. Cond. Mat. 7, L643 (1995)
    [7] A. P. Mackenzie, R. K. W. Haselwimmer, A. W. Tyler, G. G. Lonzarich, Y. Mori, S. Nishizaki, and Y. Maeno, Phys. Rev. Lett. 80, 161–164 (1998)
    [8] Y. Krockenberger, M. Uchida, K. S. Takahashi, M. Nakamura, M. Kawasaki, and
    Y. Tokura, Appl. Phys. Lett. 97, 082502 (2010)
    [9] F. Lichtenberg, A. Catana, J. Mannhart, and D. G. Schlom, Appl. Phys. Lett. 60, 1138 (1992)
    [10] Wolter Siemons, Gertjan Koster, Arturas Vailionis, Hideki Yamamoto, Dave H. A. Blank, and Malcolm R. Beasley, Phys. Rev. B 76, 075126 (2007)
    [11] J. J. Randall and R. Ward, J. Am. Chem. Soc. 81, 2629-2631 (1959)
    [12] A. Callaghan, C. W. Moeller, and R. Ward, Inorg. Chem. 5, 1572 (1966)
    [13] Wolter Siemons, Gertjan Koster, Arturas Vailionis, Hideki Yamamoto, Dave H. A. Blank and Malcolm R. Beasley, Phys. Rev. B 76, 075126 (2007)
    [14] L. Walz and F. Lichtenberg, Acta Cryst. C49, 1268-1270 (1993)
    [15] Junsoo Shin, S. V. Kalinin, H. N. Lee, H. M. Christen, R. G. Moore, E.W. Plummer, A. P. Baddorf, Surface Science 581, 118–132 (2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE