簡易檢索 / 詳目顯示

研究生: 賴俊傑
Lai, Chun-Chieh
論文名稱: 適用於低壓直流配電系統之固態式斷路器設計與實現
Design and Implementation of Solid-State Circuit Breakers for Low Voltage DC Distribution Systems
指導教授: 鄭博泰
Cheng, Po-Tai
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 70
中文關鍵詞: 直流配電系統固態式斷路器機械式斷路器
外文關鍵詞: DC distribution system, Solid-state circuit breakers, Mechanical circuit breakers
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技進步與經濟發展,能源與石油的需求愈來愈大,我們正面臨如何將有限的化石燃料,致力於更有效的效率,因此運用直流配電系統搭配電力電子的技術便可達到開源節流的目標。雖然現今仍以交流配電系統為多數,但直流配電系統可行性與場合有探討的必要,以資料中心對電力品質的要求為例子,為了提昇能源效率,嘗試使用直流配電系統可提昇14% 相對於傳統的交流配電系統。直流電主要特色:高壓或是短程距離的傳輸效率高,且相同電壓程級可輕易的併入電網、沒有虛功補償的問題。此外各式各樣低壓直流的3C產品日漸成長,例如:數位電子產品、變頻驅動器,與太陽能和燃料電池等再生能源的運用,相較於交流配電系統可減少AC/DC的轉換層級。
    直流系統中,斷路器主要功能可在發生接地故障時,將故障電流切除避免危害敏感性負載;若在分散式電源中可運用斷路器屏除故障的發電機,避免影響整個系統。斷路器主要可分為機械式與固態式開關:機械式斷路器的導通損失低但因為輔助控制慢所需截止的時間長,因此故障電流大,往往需要額定大或是具有消弧功能的斷路器;固態式斷路器則有動作時間快無電弧的優點,但主線路上以串聯的半導體元件當作開關,時間拉長導通損失就大,散熱問題就必須考量。
    一般常見的交流斷路器,多屬於機械式的,可在零電壓或是零電流使斷路器截止;但在直流系統發展中,因為直流電壓與電流沒有自然的零交越點,導致斷路器無法啟斷故障電流或是因而產生損失。在本文中,除了介紹直流配電系統的可行性外,並探討各種直流斷路器的架構與設計準則,最後經過電腦模擬與電路實驗結果加以驗證。


    The application of DC distribution system combined with power electronic techniques is the way to solve energy issues. In addition, the amount of energy consumption in data centers is always an issue worthy to be considered. The advantage in DC power system lies on the features of transmission efficiency within low distance or high voltage. Higher transmission efficiency can be achieved due to the absence of reactive power. There are kinds of products which adopt digital electronic loads or variable-frequency motors in order to enhance the performance. Since most renewable energy generators like solar cell and fuel cell, AC/DC conversions stages can be saved while applying to DC system.
    In the DC distribution grid, when grounded fault is detected at load side or distributed generation side, the DC circuit breakers should provide a fast interruption capability for the fault current and prevent the local grid from collapses. DC circuit breakers can be categorized into mechanical and solid-state types. The mechanical types have the advantages of low conduction losses, but the mechanical turn-off time is long so that the fault current is larger. For this reason the devices should be chosen at higher rating and have the capability to extinguish the occurring arc. The solid-state types have shorter turn-off time and no occurring arc. However, while a semiconductor device is used as main switch, the conduction loss is large which leads to thermal problems. The AC mechanical circuit breakers are available on the market. However, the design of circuit breakers for DC distribution system is a challenge compared with AC circuit breakers due to the absence of natural zero crossing. Therefore, in this thesis, except that the feasibility of DC distribution systems will be discussed, some topologies of DC circuit breakers in DC environment are proposed with the verification by simulation and experiment results.

    摘要 I Abstract II 目錄 III 圖目錄 VI 第一章 緒論 1 1.1 簡介 1 1.2 研究方向 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 簡介 4 2.2 直流配電系統之發展 5 2.2.1資料中心之運用 5 2.2.2 直流負載與再生能源發展 7 2.3 固態輔助諧振開關 10 2.4 直流機械式斷路器 11 2.4.1 傳統組合式機械斷路器 12 2.4.2 強迫換向組合式斷路器 13 2.4.3減振電路之機械式斷路器 15 第三章 控制原理 16 3.1 簡介 16 3.2 基本型固態式斷路器操作模式 17 3.3 減振電路固態式斷路器 20 3.3.1 操作模式 20 3.3.2 RCD snubber固態式斷路器 24 3.4 強迫換向固態式斷路器 25 3.4.1操作模式 25 3.4.2諧振電容器充電計算 31 3.4.3反向回復電流計算 33 第四章 模擬結果與分析 34 4.1 模擬環境 34 4.2 基本型固態式斷路器 35 4.2.1 實驗機台模擬額定0.8 kW 35 4.2.2 線路阻抗Ls=1.2 mH 36 4.3 減振電路固態式斷路器 37 4.3.1 實驗機台模擬額定0.8 kW 37 4.3.2 線路阻抗Ls=1.2 mH 38 4.4 強制換向固態式斷路器 39 4.4.1 實驗機台模擬額定0.8 kW 39 4.4.2 減振電容Cr=2.2 μF 40 4.5 家庭用電實例模擬 41 4.5.1 基本型固態式斷路器 41 4.5.2 減振電路固態式斷路器 42 4.5.3 強制換向固態式斷路器 44 4.6 資訊中心實例模擬 45 4.6.1 基本型固態式斷路器 45 4.6.2 減振電路固態式斷路器 46 4.6.3 強制換向固態式斷路器 47 第五章 實驗結果與分析 48 5.1 實驗環境 48 5.2 基本型固態斷路器 48 5.3 減振電路固態式斷路器 50 5.4 強迫換向固態式斷路器 54 5.5 電力損失分析 57 第六章 討論與結論 63 6.1 結論 63 6.2 未來工作 64 參考文獻65 附錄67

    [1] W. Tschudi, "DC Power for Improved Data Center Efficiency," Lawrence Berkeley National Laboratory, March 2008.
    [2] C. Meyer, R.W. De Doncker “Solid-state circuit breaker based on active thyristor topologies” IEEE Transactions on Power Electronics, vol.21,issue 2, pp. 450-458, March 2006.
    [3] C. L. Belady, “In the Data Center, Power and Cooling Costs More Than the IT Equipment it Supports,” Electronics Cooling, vol. 13, no. 1,
    http://electronics-cooling.com/articles/2007/feb/a3/
    [4] D. Salomonsson, "Modeling, Control and Protection of Low-Voltage DC Microgrids, " Doctoral Thesis in Electrical Systems Stockholm, Sweden, 2008.
    [5] A. Pratt, P. Kumar, T. V. Aldridge, “Evaluation of 400V DC Distribution in Telco and Data Centers to Improve Energy Efficiency” , Telecommunications Energy Conference, pp. 32-39, Oct. 2007.
    [6] F. Bodi, “Large-scale modeling of critical telecommunications facilities and data centers” Telecommunications Energy Conference, pp. 1-8, Sept. 2008.
    [7] M. Ton et al., High Performance Buildings: DC Power for Improved Data Center Efficiency, Lawrence Berkeley National Laboratory, Dec. 2006
    (http://hightech.lbl.gov/dc-powering/ )
    [8] H. Ikebe, “ Power systems for telecommunications in the IT age,” IEEE Intelec 2003, pp. 1-8
    [9] http://www.ecct.org.tw/print/files/family-95.pdf
    [10] P. T. Cheng, Y. H. Chen, “Design of an Impulse Commutation Bridge for the Solid-State Transfer Switch” , IEEE Transactions on Industry Applications, vol.44, pp. 1249-1258, July-Aug. 2008.
    [11] J. Heweston, P. Meckler, “Modular Conventional Protection and its Enhancement through Electronic Circuit Breaker Systems”, Telecommunications Energy Conference, pp.1-6, Sept. 2006.
    [12] C. Meyer, M. Kowal, R.W. De Doncker, “Circuit breaker concepts for future high-power DC-applications”, Industry Applications Conference, vol.2, pp. 860-866, Oct. 2005.
    [13] P. van Gelder, J. A. Ferreira, “Zero Volt Switching Hybrid DC Circuit Breakers” , Industry Applications Conference, vol.5, pp. 2923-2927, Oct. 2000.
    [14] N.Mohan, T. M. Undeland, W. P. Robbins on Power Electronics, 3th ed., USA, 2003, pp535-539.
    [15] P. Gross, K.L. Godrich, “TOTAL DC INTEGRATED DATA CENTERs” Telecommunications Conference, pp.125-130, Sept. 2005.
    [16] A. Sannino, G. Postiglione, and M. H. J. Bollen, "Feasibility of a DC network for commercial facilities," Industry Applications, IEEE Transactions on, vol. 39, pp. 1499-1507, 2003.
    [17] R. R. Boudreaux, R. M. Nelms, “A comparison of MOSFETs, IGBTs, and MCTs for solid state circuit breakers” Applied Power Electronics Conference and Exposition, vol.1, pp.227-233, March 1996

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE