研究生: |
鄭宇恩 Cheng, Yu-En |
---|---|
論文名稱: |
溫度敏感型三嵌段胺基酸水膠的合成與其在胜肽藥物口服劑型上的應用 Synthesis and Application of Thermo-Sensitive Triblock Polypeptide Hydrogel for Oral Delivery of Peptides |
指導教授: |
朱一民
Chu, I-Ming |
口試委員: |
王潔
Wang, Jane 胡尚秀 Hu, Shang-Hsiu 魏毓宏 Wei, Yu-Hong 駱俊良 Lo, Chun-Liang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 68 |
中文關鍵詞: | 水膠 、降鈣素 、溫度敏感型 、口服傳輸 |
外文關鍵詞: | hydrogel, calcitonin, temperature responses, oral delivery |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在對新設計的胜肽藥物口服給藥材料進行研究探討。甲氧基化聚乙二醇-聚左旋丙胺酸 (methoxy-poly(ethylene glycol)-poly(L-alanine),mPEG-PA) 為一已知溫度敏感型胺基酸水膠,能隨溫度產生不同的相變化特性。這種特性適合用來包覆胜肽或蛋白質藥。為增加對腸粘液的粘附能力,將甲氧基化聚乙二醇-聚左旋丙胺酸於末端接上帶電荷的離胺酸 (L-lysine) 形成新型胺基酸水膠。這種帶正電的材料將有助於與黏膜上帶負電的黏蛋白結合。該合成首先透過開環聚合,分別合成甲氧基化聚乙二醇-聚左旋丙胺酸與不同長度聚左旋賴氨酸 (poly(L-lysine),PLL)。然後,甲氧基化聚乙二醇-聚左旋丙胺酸和聚左旋賴氨酸使用NHS酯反應合成三嵌段共聚物 (mPEG-PA-PLL)。
此研究調查了在不同pH值下降鈣素的釋放以及此三嵌段共聚物形成的水凝膠的生物相容性。細胞培養3天後,mPEG-PA-PLL4和mPEG-PA-PLL14的生物相容性分別約為79%和84%。於0.1N HCl溶液中,降鈣素在mPEG-PA-PLL4和mPEG-PA-PLL14前半小時的藥物釋放,具有爆發效應,其數值分別為14.5±4.8%和20.7±1.7%。而在pH 6.8的緩衝溶液中,mPEG-PA-PLL4和 mPEG-PA-PLL14在24小時內,從水凝膠中釋放的降鈣素則分別為65.9±18.5%和100.3±12.1%。這些研究數據顯示,此新設計的材料具有可成為口服胜肽藥物載體的良好潛力。
This work aims to conduct newly design material for oral delivery of peptide drugs. Methoxy poly(ethylene glycol)-poly(L-alanine) (mPEG-PA) is a thermo-sensitive hydrogel exhibiting a sol-to-gel phase transition property. This characteristic is appropriate for encapsulating peptide or protein drugs. To enhance the adhesion ability to intestinal mucus, a thermo-sensitive polymer, mPEG-PA, modified with charged amino acid lysine was developed. This positively charged material would help to bind the negative charged mucin on the mucus. The synthesis was conducted by individually synthesizing mPEG-PA and poly(L-lysine) (PLL) of different lengths via ring-opening polymerization. Then, mPEG-PA and PLL were combined using NHS ester reaction to synthesize the triblock copolymer (mPEG-PA-PLL).
This study investigated the release profile of calcitonin at different pH values and the biocompatibility of the synthesized triblock copolymer hydrogels. After 3 days of incubation, the biocompatibilities were approximately 79% and 84% for mPEG-PA-PLL4 and mPEG-PA-PLL14, respectively. In 0.1N HCl solution, the release of calcitonin had burst effect within the first half hours and were 14.5±4.8% and 20.7±1.7% for mPEG-PA-PLL4 and mPEG-PA-PLL14, respectively. In the pH 6.8 buffer solution, calcitonin released from the hydrogels with 24 hours were 65.9±18.5% and 100.3±12.1% for mPEG-PA-PLL4 and mPEG-PA-PLL14, respectively. The initial data showed the newly design material has good potential for oral delivery of peptide drugs.
1. Craik, D. J., Fairlie, D. P., Liras, S. and Price, D. The Future of Peptide-based Drugs. Chem. Biol. Drug Des. 81, 136–147 (2013).
2. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).
3. Lipinski, C. A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235–249 (2000).
4. Anselmo, A. C., Gokarn, Y. and Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 18, 19–40 (2018).
5. Hannappel, M. Biopharmaceuticals: From peptide to drug. in 060004 (2017). doi:10.1063/1.4996533.
6. Zhang, Y. H., Shang, Q., Zheng, T., Liang, Y. Y. and Chen, T. Preparation of pH-sensitive hydrogels for oral delivery of protein. in Proceedings - 2012 International Conference on Biomedical Engineering and Biotechnology, iCBEB 2012 437–440 (2012). doi:10.1109/iCBEB.2012.310.
7. Jash, A., Ubeyitogullari, A. and Rizvi, S. S. H. Liposomes for oral delivery of protein and peptide-based therapeutics: challenges, formulation strategies, and advances. J. Mater. Chem. B 9, 4773–4792 (2021).
8. Mansoor, S., Kondiah, P. P. D. and Choonara, Y. E. Advanced Hydrogels for the Controlled Delivery of Insulin. Pharmaceutics 13, 2113 (2021).
9. Xu, Y., Michalowski, C. B. and Beloqui, A. Advances in lipid carriers for drug delivery to the gastrointestinal tract. Curr. Opin. Colloid Interface Sci. 52, 101414 (2021).
10. Paroha, S., Chandel, A. K. S. and Dubey, R. D. Nanosystems for drug delivery of coenzyme Q10. Environmental Chemistry Letters (2018) doi:10.1007/s10311-017-0664-9.
11. Peppas, N. A. and Khare, A. R. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv. Drug Deliv. Rev. 11, 1–35 (1993).
12. Sharpe, L. A., Daily, A. M., Horava, S. D. and Peppas, N. A. Therapeutic applications of hydrogels in oral drug delivery. Expert Opin. Drug Deliv. 11, 901–915 (2014).
13. Qiu, Y. and Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001).
14. Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58, 1655–1670 (2006).
15. Rizwan, M. et al. pH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers (Basel). 9, 137 (2017).
16. Patel, P., Mandal, A., Gote, V., Pal, D. and Mitra, A. K. Thermosensitive hydrogel-based drug delivery system for sustained drug release. J. Polym. Res. 26, (2019).
17. Lin, S. et al. Growth factor-loaded microspheres in mPEG-polypeptide hydrogel system for articular cartilage repair. J. Biomed. Mater. Res. A 109, 2516–2526 (2021).
18. Lin, H. C. et al. In situ gelling-polypeptide hydrogel systems for the subcutaneous transplantation of MIN6 cells. J. Polym. Res. 27, (2020).
19. Sim, J., Lee, H. J., Jeong, B. and Park, M. H. Poly(Ethylene glycol)-poly(l-alanine)/hyaluronic acid complex as a 3d platform for understanding cancer cell migration in the tumor microenvironment. Polymers (Basel). 13, (2021).
20. Wu, I. E. et al. Thermosensitive polyester hydrogel for application of immunosuppressive drug delivery system in skin allograft. Gels 7, (2021).
21. Anggelia, M. R., Cheng, H. Y., Wen, C. J., Wang, A. Y. L. and Lin, C. H. A mixed thermosensitive hydrogel system for sustained delivery of Tacrolimus for immunosuppressive therapy. Pharmaceutics 11, (2019).
22. Choi, Y. Y. et al. Block length affects secondary structure, nanoassembly and thermosensitivity of poly(ethylene glycol)-poly(l-alanine) block copolymers. J. Mater. Chem. 20, 3416–3421 (2010).
23. Al-Jamal, K. T. et al. Cationic poly- L -Lysine dendrimer complexes doxorubicin and delays tumor growth in vitro and in vivo. ACS Nano 7, 1905–1917 (2013).
24. Isaksson, K., Åkerberg, D., Posaric-Bauden, M., Andersson, R. and Tingstedt, B. In vivo toxicity and biodistribution of intraperitoneal and intravenous poly-l-lysine and poly-l-lysine/poly-l-glutamate in rats. J. Mater. Sci. Mater. Med. 25, 1293–1299 (2014).
25. Shaji, J. and Patole, V. Protein and peptide drug delivery: Oral approaches. Indian J. Pharm. Sci. 70, 269–277 (2008).
26. Hamman, J. H., Enslin, G. M. and Kotzé, A. F. Oral delivery of peptide drugs: Barriers and developments. BioDrugs 19, 165–177 (2005).
27. Brown, T. D., Whitehead, K. A. and Mitragotri, S. Materials for oral delivery of proteins and peptides. Nature Reviews Materials vol. 5 127–148 (2020).
28. Dubey, S. K. et al. Oral peptide delivery: challenges and the way ahead. Drug Discov. Today 26, 931–950 (2021).
29. Kiptoo, P., Calcagno, A. M. and Siahaan, T. J. Physiological, Biochemical, and Chemical Barriers to Oral Drug Delivery. in Drug Delivery: Principles and Applications: Second Edition 19–34 (2016). doi:10.1002/9781118833322.ch2.
30. Zhu, Q. et al. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B 11, 2416–2448 (2021).
31. Mahato, R. I., Narang, A. S., Thoma, L. and Miller, D. D. Emerging trends in oral delivery of peptide and protein drugs. Crit. Rev. Ther. Drug Carrier Syst. 20, 153–214 (2003).
32. Bruno, B. J., Miller, G. D. and Lim, C. S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 4, 1443–1467 (2013).
33. Massa, S., Fouad, A., Ebrahimi, M. and Maria, P. L. S. Emerging Trends in Oral Mucoadhesive Drug Delivery for Head and Neck Cancer. in Early Detection and Treatment of Head & Neck Cancers (eds. ElAssal, R., Gaudilliere, D. &Connelly, S. T.) 199–217 (Springer, 2021). doi:10.1007/978-3-030-69852-2_9.
34. Witten, J., Samad, T. and Ribbeck, K. Selective permeability of mucus barriers. Curr. Opin. Biotechnol. 52, 124–133 (2018).
35. Harrison, G. A. Insulin in alcoholic solution by the mouth. Br. Med. J. 2, 1204–1205 (1923).
36. Mitragotri, S., Burke, P. A. and Langer, R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov. 13, 655–672 (2014).
37. Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020).
38. Bernkop-Schnürch, A. The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins. J. Control. Release 52, 1–16 (1998).
39. Saghazadeh, S. et al. Drug delivery systems and materials for wound healing applications. Adv. Drug Deliv. Rev. 127, 138–166 (2018).
40. Zhang, K., Xue, K. and Loh, X. J. Thermo-Responsive Hydrogels : From Recent Progress to. Gels 7, 1–17 (2021).
41. Jeong, Y. et al. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. J. Control. Release 137, 25–30 (2009).
42. Shi, J., Yu, L. and Ding, J. PEG-based thermosensitive and biodegradable hydrogels. Acta Biomater. 128, 42–59 (2021).
43. Dharmayanti, C., Gillam, T. A., Klingler-Hoffmann, M., Albrecht, H. and Blencowe, A. Strategies for the development of pH-responsive synthetic polypeptides and polymer-peptide hybrids: Recent advancements. Polymers (Basel). 13, 1–17 (2021).
44. Copp, D. H. and Cheney, B. Calcitonin—a Hormone from the Parathyroid which Lowers the Calcium-level of the Blood. Nature 193, 381–382 (1962).
45. Foster, G.V. et al. Thyroid origin of Calcitonin. Nature 202, 1303–1305 (1964).
46. Brizzolara, D., Cantow, H. J., Diederichs, K., Keller, E. and Domb, A. J. Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29, 191–197 (1996).
47. Chesnut, C. H. et al. Salmon calcitonin: A review of current and future therapeutic indications. Osteoporos. Int. 19, 479–491 (2008).
48. Victor, S. P., Paul, W. and Sharma, C. P. Eligen® Technology for Oral Delivery of Proteins and Peptides. in Mucosal Delivery of Biopharmaceuticals 407–422 (Springer US, 2014). doi:10.1007/978-1-4614-9524-6_18.
49. Lin, S.-Y. Salmon calcitonin: conformational changes and stabilizer effects. AIMS Biophys. 2, 695–723 (2015).
50. Mathematical models of drug release. in Strategies to Modify the Drug Release from Pharmaceutical Systems 63–86 (Elsevier, 2015). doi:10.1016/B978-0-08-100092-2.00005-9.
51. Chandel, A. K. S., Kumar, C. U. and Jewrajka, S. K. Effect of polyethylene glycol on properties and drug encapsulation-release performance of biodegradable/cytocompatible agarose-polyethylene glycol-polycaprolactone amphiphilic Co-network gels. ACS Appl. Mater. Interfaces 8, 3182–3192 (2016).
52. Wang, Z., Zhang, Q., Shen, H., Yang, P. and Zhou, X. Optimized MALDI-TOF MS Strategy for Characterizing Polymers. Front. Chem. 9, 1–10 (2021).
53. Karabasz, A., Szczepanowicz, K., Cierniak, A., Bereta, J. and Bzowska, M. In vitro toxicity studies of biodegradable, polyelectrolyte nanocapsules. Int. J. Nanomedicine 13, 5159–5172 (2018).
54. Isaksson, K., Åkerberg, D., Andersson, R. and Tingstedt, B. Toxicity and dose response of intra-abdominally administered poly-l-α-lysine and poly-L-glutamate for postoperative adhesion protection. Eur. Surg. Res. 44, 17–22 (2010).
55. Ayyappan, J. P., Sami, H., Rajalekshmi, D. C., Sivakumar, S. and Abraham, A. Immunocompatibility and Toxicity Studies of Poly‐L‐Lysine Nanocapsules in Sprague–Dawley Rats for Drug‐Delivery Applications. Chem. Biol. Drug Des. 84, 292–299 (2014).
56. Sadeghi-kaji, S., Shareghi, B., Saboury, A. A. and Farhadian, S. Spectroscopic and molecular docking studies on the interaction between spermidine and pancreatic elastase. Int. J. Biol. Macromol. 131, 473–483 (2019).