研究生: |
曾新和 Tseng, Hsin-Ho |
---|---|
論文名稱: |
平板熱管冷凝區可視化觀察與量測 Visualization and Measurement for the Condenser in Operating Flat-Plate Heat Pipes |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: |
許文震
簡國祥 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 38 |
中文關鍵詞: | 熱管 、冷凝區 、可視化 |
外文關鍵詞: | heat pipes, condensor, visualization |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以可視化的平板熱管,觀察在不同毛細結構、工作流體下,冷凝區的冷凝現象,並且量測冷凝熱阻。並且不可凝氣體造成的影響被控制在可接受的範圍內。為了減少在3mm銅板中的橫向熱傳導,在蒸發區及冷凝區的周圍開溝槽,將溝槽處的板厚削薄至0.6mm。藉由可視化設備的觀察,不同工作流體在冷凝區的尾端均有最高的水位,以水為工作流體時,最上層毛細有部分露頭:而以甲醇為工作流體時,最上層毛細被甲醇淹沒。冷凝熱阻在每一個瓦數下都比蒸發熱阻大。藉由熱阻換算成熱對流係數,冷凝區的熱對流係數hc較蒸發區的熱對流係數he小許多倍。以水為工作流體時,由於水和銅表面間的接觸角非為零度,故露頭的冷凝表面發生週期性滴式凝結,而以接觸角為零度的甲醇為工作流體則無此現象。在相同的毛細結構下,以甲醇為工作流體的冷凝熱阻比以水為工作流體的冷凝熱阻大。
參考文獻
[1] Y. Wang, K. Vafai, An experimental investigation of thermal performance of an asymmetrical flat plate heat pipe, Int. J. Heat Mass Transfer, 43 (2000) 2657-2668.
[2] J.Y. Chang, R.S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, J. Heat Transfer 130 (2008) 1215011
[3] J.H. Liou, C.W. Chang, C. Chao, S.C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat and Mass Transfer, 53 (2010) 1498-1506
[4] G.S. Hwang, E. Fleming, B. Carne, S. Sharratt, Y. Nam, P. Dussinger, Y.S. Ju, M. Kaviany, Multi-artery heat-pipe spreader: Lateral liquid suppl, Int. J. Heat Mass Transfer, 54 (2011) 2334-2340
[5] S.C. Wong, J.H. Liou and, C.W. Chang, Evaporation resistance measurement with visualization for sintered copper-powder evaporator in operating flat-plate heat pipes, Int. J. Heat and Mass Transfer, 53 (2010) 3792-3798
[6] S.C. Wong, Y.C. Lin, J.H. Liou, Visualization and evaporation resistance measurement in heat pipes charged with water, methanol or acetone, Int. J. Thermal Sci., 52 (2012) 154-160
[7] R. Kempers, A.J. Robinson, D. Ewing, C.Y. Ching, Characterization of evaporator and condenser thermal resistances of a screen mesh wicked heat pipe, Int. J. Heat Mass Transfer, 51 (2008) 6039–6046
[8] S. Lips, F. Lefevre, J. Bonjour, Combined effects of the filling ratio and the vapour space thickness on the performance of a flat plate heat pipe, Int. J. Heat Mass Transfer, 53 (2010) 694-702
[9] K.T. Lin, S.C. Wong, Performance degradation of flattened heat pipes, Appl. Therm. Eng., 10.1016/j.applthermaleng.2012.06.001.
[10] S. Machiroutu, B. Kluge, M. Kuroda, H. Pokharna, Evaluation of heat pipe condenser performance for laptop cooling, (2006) Proc. 8th Int. Heat Pipe Symp., Kumamoto, Japan.
[11] R. Ranjan, J.Y. Murthy, S.V. Garimella, Analysis of the wicking and thin-film evaporation characteristics of microstructures, J. Heat Transfer, 131 (2009)101001
[12] 陳世恆,運作中平板熱管在冷凝區可視化觀察與量測,