簡易檢索 / 詳目顯示

研究生: 王俊清
Chun-Ching Wang
論文名稱: 模擬雙游離腔於光子與中子混合輻射場的反應特性
Simulation of paired ionization chambers in a photon/neutron mixed radiation field
指導教授: 董傳中
Chuan-Jong Tung
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 58
中文關鍵詞: 雙游離腔法中子反應
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文乃利用蒙地卡羅方法來決定游離腔在中子場下的相對中子靈敏度(relative neutron sensitivity),並且應用於清華大學開放式水池反應器(Tsing Hua open-pool reactor,簡稱THOR)中雙游離腔法(dual ionization chamber technique)的量測。
    THOR硼中子捕獲治療(boron neutron capture therapy,簡稱BNCT)之治療環境為一混合輻射場:反應器產生的超熱中子束呈能譜分佈,並且常伴隨有光子產生。為了瞭解混合輻射場對病人的的影響,因此須使用多種方法來評估不同輻射的劑量貢獻。其中常利用雙游離腔法得到快中子劑量及光子劑量。在應用雙游離腔法計算劑量時,須知道游離腔對中子的反應,才能以公式解得到快中子及光子的劑量貢獻。
    由於中子反應與能量相關,會隨著中子射束品質的改變而不同,因此在本論文中找出游離腔與中子反應的關係,並討論游離腔之角度依存性,再進一步得到BNCT混合場下水假體中不同位置游離腔對中子的反應。最後使用實驗量測結果配合游離腔的中子反應得到水假體中不同位置的快中子劑量及光子劑量。


    摘要 i 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第1章 前言 1 1.1 BNCT混合輻射場劑量 1 1.2 雙游離腔法 5 1.3 游離腔反應 6 1.3.1 光子校正因子 (A值) 6 1.3.1 中子校正因子 (B值) 7 1.4 文獻回顧 8 1.4.1 組織等效游離腔kt值 10 1.4.2 石墨游離腔ku值 12 第2章 材料與方法 16 2.1 游離腔 16 2.1.1 建立游離腔模型 18 2.1.2 荷電粒子平衡條件 18 2.2 蒙地卡羅方法 19 2.2.1 Fluka簡介 20 2.2.2 Fluka與MCNP的比較 23 2.3 Wn值 24 2.3.1 組織等效氣體的Wn值 25 2.3.2 二氧化碳氣體的Wn值 27 2.4 組織劑量 30 2.4.1 克馬因數 30 2.5 游離腔對中子能量的特性曲線 32 2.6 游離腔的角度依存性 33 2.7 THOR超熱中子場下水假體中的k值 33 2.8 THOR超熱中子場下水假體中的快中子劑量及光子劑量 34 第3章 結果與討論 36 3.1 二氧化碳氣體的Wn值 36 3.2 游離腔對中子能量的特性曲線 39 3.2.1 組織等效游離腔 (IC-18) 39 3.2.2 石墨游離腔 (IC-18G) 43 3.3 能譜套用k值之驗證 45 3.4 游離腔的角度依存性 45 3.5 THOR超熱中子場下水假體中的k值 48 3.5.1 射束中軸分佈 48 3.5.2 離軸分佈 51 3.6 THOR超熱中子場下水假體中的中子劑量與光子劑量 52 第四章 結論 54 第五章 參考文獻 55 第六章 附錄 57 6.1 石墨游離腔之二氧化碳氣體Wn值推導 57

    1. ENDF - VI neutron data from T2 Nuclear Information Service, Los alamos.
    2. Raaijmakers, C.P.J., et al., Determination of Dose Components in Phantoms Irradiated with an Epithermal Neutron Beam for Boron Neutron-Capture Therapy. Medical Physics, 1995. 22(3): p. 321-329.
    3. Rogus, R.D., O.K. Harling, and J.C. Yanch, Mixed Field Dosimetry of Epithermal Neutron Beams for Boron Neutron-Capture Therapy at the Mitr-Ii Research Reactor. Medical Physics, 1994. 21(10): p. 1611-1625.
    4. Tissue Substitutes in Radiation Dosimetry and Measurement, in ICRU report 44. 1989, International Commission on Radiation Units and measurements.
    5. Particle Transport Simulation Laboratory, ESS, NTHU.
    6. Coyne, J.J., et al., Calculations of Microdosimetric Spectra for Low-Energy Neutrons. Radiation Protection Dosimetry, 1990. 31(1-4): p. 217-221.
    7. Attix, F.H., introduction to radiological physics and radiation dosimetry. 1986.
    8. af Rosenschold, P.M.M., et al., Reference dosimetry at the neutron capture therapy facility at Studsvik. Medical Physics, 2003. 30(7): p. 1569-1579.
    9. Neutron Dosimetry for Biology and Medicine, in ICRU report 26. 1977, International commission on radiation units and measurements.
    10. F. M. WATERMAN, F.T.K.I., L. S. SKAGGS,, Energy Dependence of the Neutron Sensitivity of C-CO2,Mg-Ar and TE-TE Ionisation Chambers. PHYS. MED. BIOL., 1979. 24(4): p. 721-733.
    11. Boring, B.E.L.a.J.W., The Average Energy per Ion Pair, W̄, for Hydrogen and Oxygen Ions in a Tissue Equivalent Gas Radiation Research, 1973. 55(1): p. 1-9
    12. Huber, R., D. Combecher, and G. Burger, Measurement of Average Energy Required to Produce an Ion-Pair (W-Value) for Low-Energy Ions in Several Gases. Radiation Research, 1985. 101(2): p. 237-251.
    13. Jansen, J.T.M., et al., Relative neutron sensitivity of tissue-equivalent ionisation chambers in an epithermal neutron beam for boron neutron capture therapy. Radiation Protection Dosimetry, 1997. 70(1-4): p. 27-32.
    14. Raaijmakers, C.P.J., et al., The neutron sensitivity of dosimeters applied to boron neutron capture therapy. Medical Physics, 1996. 23(9): p. 1581-1589.
    15. Endo, S., et al., Determination of the relative neutron sensitivity of a C-CO2 ionization chamber. Physics in Medicine and Biology, 1996. 41(6): p. 1037-1043.
    16. F. M. WATERMAN, F.T.K.I., L. S. SKAGGS,, Comparison of Two Independent Methods for Determining the neutron/gamma Sensitivity of a Dosemeter. PHYS. MED. BIOL., 1977. 22(5): p. 880-888.
    17. Kosunen, A., et al., Twin ionisation chambers for dose determinations in phantom in an epithermal neutron beam. Radiation Protection Dosimetry, 1999. 81(3): p. 187-194.
    18. 張瑜珊, 清華大學開放式水池反應器之超熱中子束應用於硼中子捕獲治療之混合輻射場劑量研究, 原子科學系. 1996, 國立清華大學.
    19. M.J. Berger, J.S.C., M.A. Zucker and J. Chang, Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions, NIST.
    20. A. Fasso`, A.F., J. Ranft, and P.R. Sala, FLUKA: a multi-particle transport code. 2005.
    21. Pearson, D.W., et al., Ionization Error Due to Porosity in Graphite Ionization Chambers. Physics in Medicine and Biology, 1980. 25(2): p. 333-338.
    22. Siebert, B.R.L. and J.J. Coyne, Dose Conversion Factors and Wn Values for Infinitesimal and Infinite Tissue-Equivalent Ion Chambers in Monoenergetic Neutron Fields from Thermal to 20-Mev. Radiation Protection Dosimetry, 1984. 9(3): p. 215-218.
    23. Taylor, G.C., et al., Neutron W Values in Methane-Based Tissue Equivalent Gas up to 60 MeV. Radiat Prot Dosimetry, 1995. 61(1-3): p. 285-290.
    24. Caswell, R.S. and J.J. Coyne, Interaction of Neutrons and Secondary Charged-Particles with Tissue - Secondary Particle Spectra. Radiation Research, 1972. 52(3): p. 448-470.
    25. Dennis, J.A., Computed Ionization and Kerma Values in Neutron-Irradiated Gases. Physics in Medicine and Biology, 1973. 18(3): p. 379-395.
    26. Bichsel, H. and A. Rubach, Neutron Dosimetry with Spherical Ionization Chambers .2. Basic Physical Data. Physics in Medicine and Biology, 1982. 27(8): p. 1003-1013.
    27. Caswell, R.S., J.J. Coyne, and M.L. Randolph, Kerma Factors for Neutron Energies Below 30-Mev. Radiation Research, 1980. 83(2): p. 217-254.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE