簡易檢索 / 詳目顯示

研究生: 陳立豪
Chen, Li-Hao
論文名稱: 使用 H→WW*→lvqq 頻道分析 VH 生成模式中的高動量希格斯玻色子
Analysis of Boosted Higgs Bosons in the VH Production Mode with the H→WW*→lvqq channel
指導教授: 徐百嫻
Hsu, Pai-Hsien
口試委員: 張敬民
Cheung, King-Man
陳凱風
Chen, Kai-Feng
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 62
中文關鍵詞: 希格斯玻色子粒子物理
外文關鍵詞: VH Production Mode, H→WW*→lvqq channel
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • N/A


    This thesis aim to utilize MC generated sample to find the selection characterize H → W W → lνqq final state. We choose the VH production mode and require the vector boson to decay to leptons. We focus on the high Higgs pT region, in which the two jets from the Higgs boson decay get close to each other and form a large-R (R=1.0) jet. We will utilize the additional leptons and the large-R jet to identify the lνqq final state. With Luminosity 58 fb−1,√s = 13TeV the best significance for WH sample is 0.51, ZH(Z→ee) is 2.70, ZH(Z→ μμ) is 0.28.

    Abstract i 發表聲明書 ii 1 Introduction 1 1.1 Higgs boson physics review . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Standard Model and Higgs boson . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Higgs boson production mode . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Higgs boson decay channel . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.4 Overview of H → W W → lνqq . . . . . . . . . . . . . . . . . . . . 4 1.2 Motivation and study method . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 The ATLAS Detector and Data Sample 9 2.1 The Large Hadron collider Experiment . . . . . . . . . . . . . . . . . . . . . . 9 2.2 What happened after p-p collision? . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 The Coordinate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 The ATLAS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.1 Inner Detector: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.2 Calorimeter: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.3 Muon Spectrometer: . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.4 Missing transverse energy: . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.6 lepton identification and b-tagging jet . . . . . . . . . . . . . . . . . . . . . . 17 2.6.1 lepton identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.6.2 b-tagging jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.7 object reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7.1 Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7.2 Muon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7.3 Jet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.7.4 Large-R jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.7.5 MET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.8 Monte Carlo Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Observable and Event Selection 25 3.1 Signal properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Signal candidate optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.1 Low-level object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 High-level object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 iii 3.3.3 Observable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.1 Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.4.2 W H signal selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4.3 ZH (Z → ee) signal selection . . . . . . . . . . . . . . . . . . . . . . 36 3.4.4 ZH (Z → μμ) signal selection . . . . . . . . . . . . . . . . . . . . . . 37 4 ML Analysis 41 4.1 ML method Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.1 Boost Decision Tree (BDT) . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.2 Deep Neural Network (DNN) . . . . . . . . . . . . . . . . . . . . . . 42 4.1.3 ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Training Sample and Model Structure . . . . . . . . . . . . . . . . . . . . . . 44 4.3 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4 Model Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.1 Input variable Optimization . . . . . . . . . . . . . . . . . . . . . . . 47 4.4.2 Model setting Optimization . . . . . . . . . . . . . . . . . . . . . . . 48 5 Results and Conclusion 53 5.1 Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 Cutflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 References 61

    [1] Bernie Hobbs, “The Standard Model of particle physics is brilliant and com-
    pletely flawed.” https://www.abc.net.au/news/science/2017-07-15/the-standard-model-
    of-particle-physics-explained/7670338.
    [2] Dennis SILVERMAN, “Higgs production and decay channels.” https://sites.uci.edu/
    energyobserver/2012/11/26/higgs-production-and-decay-channels.
    [3] CERN, “Facts and figures about the lhc.” https://home.web.cern.ch/resources/faqs/facts-
    and-figures-about-lhc.
    [4] Johannes Haller, “Physics in pp collisions.” https://www.desy.de/f/students/
    lectures2009/haller2.pdf.
    [5] Changqiao LI, “B-tagging in atlas experiment.” https://indico.in2p3.fr/event/13330/
    contributions/13775/attachments/11586/14280/Changqiao_TPJRJC.pdf.
    [6] G. Aad et al, “The atlas experiment at the cern large hadron collider,” JINST, 3:S08003,
    2008.
    [7] Bogdan Mishchenko, “Presentation on lcfiplus benchmarking for sid detector, momen-
    tum resolution update.” https://agenda.linearcollider.org/event/7645/contributions/
    40197/attachments/32341/49085/Bogdan_Mishchenko_25_10_2017_LCWS.pdf.
    [8] Deng and Haowen and Youyou Zhou and Lin Wang and Cheng Zhang, “Ensemble learn-
    ing for the early prediction of neonatal jaundice with genetic features.,” BMC medical
    informatics and decision making 21, pp. 1–11, 2021.
    [9] Jonghun Lim and Soohwan Jeong and etc, “Development of dye exhaustion behavior
    prediction model using deep neural network,” Computer Aided Chemical Engineering,
    vol. 49, pp. 1825–1830, 2022.
    [10] Glenn-jocher and Burhan-Q, “K-fold cross validation with ultralytics.”
    https://docs.ultralytics.com/guides/kfold-cross-validation/conclusion.
    [11] ATLAS Collaboration, “Measurements of higgs boson production and couplings in dibo-
    son final states with the atlas detector at the lhc,” Phys. Lett. B 726 (2013) 88, pp. 10–14,
    2013.
    [12] ATLAS Collaboration, “Search for the higgs boson in the h → ww → lνjj decay channel
    in pp collisions at √s = 7 tev with the atlas detector,” Phys.Rev.Lett. 107 (2011) 231801,
    pp. 1–4, 2011.
    61
    [13] ATLAS Collaboration, “Limits on the production of the standard model higgs boson in pp
    collisions at √s = 7 tev with the atlas detector,” Eur.Phys.J.C 71 (2011) 1728, p. 6, 2011.
    [14] ATLAS Collaboration, “Atlas flavour-tagging algorithms for the lhc run 2 pp collision
    dataset,” Eur.Phys.J.C 83 (2023) 7, 681, p. 13, 2023.
    [15] ATLAS Collaboration, “Atlas b-jet identification performance and efficiency measure-
    ment with t ̄t events in pp collisions at √s = 13 tev,” Eur. Phys. J. C 79 (2019) 970, p. 7,
    2019.
    [16] ATLAS Collaboration, “Measurements of higgs boson production and couplings in dibo-
    son final states with the atlas detector at the lhc,” Physics Letters B 726 (2013) 88
    –119,
    pp. 88–89.
    [17] ATLAS Collaboration, “Optimisation of large-radius jet reconstruction for the atlas detec-
    tor in 13 tev proton–proton collisions,” Eur. Phys. J. C 81 (2021) 4, 334, p. 3.
    [18] S. Frixione and P. Nason and C. Oleari, “Matching nlo qcd computations with parton
    shower simulations: the powheg method,” High Energy Phys. 11, 070, 2007.
    [19] T. Sjöstrand and S. Mrenna and P. Skands, “A brief introduction to pythia 8.1,” Comput.
    Phys. Commun. 178, p. 852–867, 2008.
    [20] D.J. Lange, “The evtgen particle decay simulation package,” Nucl. Instrum., vol. Methods
    A 462, p. 152–155, 2001.
    [21] ATLAS Collaboration, “Formulae for Estimating Significance,” ATLAS PUB Note, p. 2,
    26th September 2020.

    QR CODE