簡易檢索 / 詳目顯示

研究生: 葉昭成
Yeh, Chao-Chen
論文名稱: 外爾半金屬中的手徵異常與熱電效應
Chiral anomalies and thermoelectric properties of Weyl semimetal
指導教授: 牟中瑜
Mou,Chung-Yu
口試委員: 張明哲
Chang,Ming-Che
仲崇厚
Chung,Chung-Hou
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 35
中文關鍵詞: 外爾半金屬熱電效應
外文關鍵詞: Weyl, semimetal, thermoelectric
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在凝體物理中絕大多數金屬導體的傳輸性質是由系統的弛豫時間(relaxation time)所決定的。最近幾年有一系列新的材料他們的傳輸性質不僅是由弛豫時間所決定,材料的能帶結構的拓樸性質也扮演著很重要的腳色。而外爾半金屬(Weyl semimetal)就是其中一類的拓樸材料。在這論文裡我們想要研究的是像外爾半金屬這類的拓樸材料,它們的拓樸性質是否也會反映在它們的熱傳導和熱電效應上。在本文中我們透過波茲曼方程式(Boltzmann equation)和線性化的能帶結構用半古典的方式去計算外爾半金屬中的傳輸性質,並與久保公式(Kubo formula)的結果作比較。外爾半金屬的異常傳導性質來自於能帶結構中的外爾點(Weyl node)的特殊拓樸,我們希望能了解這類能帶拓樸性質是否也會反映在材料的熱傳導以及熱電效應上。
    在我們的結果中發現,熱傳導和熱電效應中並沒有明顯的異常現象發生。另外我們用久保公式研究Thermal Chiral Magnetic effect發現,系統中並沒有類似的傳導現象出現。


    In most of conductors, the transport properties are governed by the relaxation time of the material. Recently, there is new kind of material that its transport is not only determind by the relaxation time but also the topology of band structure. The Weyl semimetal is one of these topological materials. In this thesis, we investigate the electronic and thermal transport properties of the Weyl semimetal based on Boltzmann equation approach and a linearized Weyl semimetal model. We also compare the result of Boltzmann equation to the Kubo formula approach. The anomalous electronic transport properties of the Weyl semimetal are originated from the topology of Weyl nodes. We expect that the analogous effect can also be found in the thermal transport and electric effect of Weyl semimetal.
    Our result shows that while anomalous behavior shows up in electronic transport, thermal conductivity and thermoelectric properties may not have the similar behavior under parallel electric field and magnetic field. On the other hand, by studying the Kubo formula approach we found that there is no thermal chiral magnetic effect.

    1 Introduction 5 2 The Semiclassical Boltzmann approach 7 3 Kubo formula approach 26 4 Chiral magnetic effect 31 5 Conclusion 33

    E. V. Gorbar, V. A. Miransky, and I. A. Shovkovy Phys. Rev. B 89 085126 (2014)

    Nguyen Hong SHON and Tsuneya ANDO J. Phys. Soc. Jpn. 67 2421 (1998)

    M.W. Vazifeh and M. Franz Phys. Rev. Lett. 111, 027201 (2013)

    Pavan Hosur, Xiaoliang Qi arXiv:1309.4464

    Ming-Che Chang and Min-Fong Yang Phys. Rev. B 91 11520 (2015)

    Ming-Che Chang and Min-Fong Yang arXiv:1508.05187

    Ki-Seok Kim,Heon-Jung Kim and M. Sasaki Phys. Rev. B 89, 195137 (2014)

    D. T. Son and B. Z. Spivak Phys. Rev. B 88 104412 (2013)

    D. Xiao, Y. Yao, Z. Fang and Q. Niu, Phys. Rev. Lett. 97, 026603 (2006)

    Rex Lundgren, Pontus Laurell, and Gregory A.Fiete Phys. Rev. B 90, 165115 (2014)

    H.B Nielsen M. Ninomiya, Nuclear Physics B 185 20 (1981)

    H.B Nielsen M. Ninomiya, Nuclear Physics B 193 173 (1981)

    Hai-Zhou and Shun-Qing Shen, Phys. Rev. B 92, 035203 (2015)

    Mahan, Gerald D, Many-particle Physics.

    SUN Liang, WAN Shao-Long, Chin. Phys. Lett. 32 057501 (2015)

    ZHOU Jian-Hui, JIANG Hua, NIU Qian, SHI Jun-Ren Chin. Phys. Lett. 30, 027101

    J. Klier, I.V. Gornyi, and A.D. Mirlin, Phys. Rev. B 92, 205113 (2015)

    V.P. Gusynin and S. G. Sharopov, Phys. Rev. B 73, 245411 (2006)

    Heon-Jung Kim, Ki-Seok Kim, J.-F Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang and L.Li, Phys. Rev. Lett. 111, 246603 (2013)

    Pouyan Ghaemi, Roger S. K. Mong, and J.E. Moore, Phys. Rev. Lett. 105, 166603 (2010)

    Xin-Zhong Yan, Yousef Romiah, and C. S. Ting, Phys. Rev. B 80, 165423 (2009)

    A. A. Burkov, arXiv: 1502.07609 (2015)

    A. A. Burkov and Leon Balents, Phys. Rev. Lett. 107, 127205 (2011)

    Y. Chen, Si Wu, and A.A. Burkov, arXiv: 1306.5344

    A. A. Zyuzin and A. A. Burkov, Phys. Rev. B 86, 115133 (2012)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE