簡易檢索 / 詳目顯示

研究生: 石貴中
Shih, Kuei-Chung
論文名稱: 發展三維定量構效關係組合模型架構用於搜尋與優化標靶蛋白質抑制劑基於Pharmacophore, CoMFA 和 CoMSIA 電腦技術
Develop 3D-QSAR Combination Modeling Approach for Screening and Optimizing Target Protein Inhibitors Based on Pharmacophore, CoMFA, and CoMSIA in Silico
指導教授: 唐傳義
Tang, Chuan-Yi
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 168
中文關鍵詞: 定量構效關係pharmacophoreCoMFACoMSIA組合模型架構
外文關鍵詞: QSAR, pharmacophore, CoMFA, CoMSIA, combination modeling approach
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今的合理化藥物設計裡,定量構效關係﹝QSAR﹞是一種重要的技術,這樣的技術主要是用來建立一計算模型,而這個模型能夠反應出蛋白質和抑制劑間統計相關性。在目前主要的兩項三維定量構效關係﹝3D-QSAR﹞技術分別為Comparative Molecular Field Analysis (CoMFA)/ Comparative Molecular Similarity Index Analysis (CoMSIA)和Pharmacophore。Pharmacophore最具代表性的功能就是利用三維搜尋去辨識標靶蛋白質相關的抑制劑。但是,理論型的pharmacophore最多只能產生出五種特徵球,這個限制導致理論型pharmacophore無法完整的描述出抑制劑所需要的特徵。另外pharmacophore特徵球並不能在三維空間上針對蛋白質結合區的空間大小進行限制。另外一項技術,CoMFA/CoMSIA模型雖然不能夠進行三維搜尋去辨識相關的抑制劑,但是他們的特點是可以簡單的用來修改分子結構使其最佳化和能夠描述出分子量的限制範圍。另外,CoMFA/CoMSIA模型是使用特徵輪廓來描述抑制劑的化學特徵。而特徵輪廓的數量並不會受到限制,因此CoMFA/CoMSIA模型能夠利用特徵輪廓完整的描述出抑制劑所需要的特徵。透過這樣的特性,CoMFA/CoMSIA模型能夠提供較佳的預測化合物生物活性的預測能力。根據上述的兩項不同技術間的描述,在本篇論文內我們將這兩項不同的技術整合再一起。我們提出了一3D-QSAR組合模型架構用來解決這兩項3D-QSAR技術彼此的缺點。我們的組合架構模型能夠提供一個有用的工具,用來開發新的先導化合物並且透過虛擬篩選來預測其生物活性。


    Quantitative Structure Activity Relationships (QSAR) is an important technique in the rational drug design, which was used to build computational models to find a statistically significant correlation between the receptor and inhibitors. There are two mainstream of 3D-QSAR technologies, namely Comparative Molecular Field Analysis (CoMFA)/ Comparative Molecular Similarity Index Analysis (CoMSIA) and Pharmacophore. Most significant function of pharamcophore model is to use 3D screen to recognize the related target protein inhibitors. However, the number of pharmacophore features was restricted as five chemical features at maximum, and which could not describe the 3D space limitation of the binding site. This restriction induces incompletely describing the chemical features of inhibitors. Contrastingly, the other two models, CoMFA and CoMSIA were not suitable to search 3D databases, but can easily be used to modify the molecule structure optimization and describe the limit range of molecule weights. Additional, CoMFA and CoMSIA models use contours to describe the chemical features of inhibitor. The number of contours was not restricted, that could reflect the chemical features of inhibitor. Therefore, CoMFA and CoMSIA models could provide better predication ability to predict the bioactivity. According to above characters, we prefer to combine these two different technologies. We propose a 3D-QSAR combination modeling approach to solve two 3D-QSAR technical shortcomings of each other. Our combination approach could provide a valuable tool in the design of new leads with desired biological activity by virtual screening.

    Abstract i 摘要 iii 致謝辭 v Table of Contents vii List of Figures xi List of Tables xiii Chapter 1 Introduction 1 Chapter 2 3D-QSAR Modelling Methods 7 2.1 Designing a 3D-QSAR Combination Modeling Approach 7 2.2 Generating Theoretical pharmacophore Models 7 2.3 Generating CoMFA and CoMSIA Models 8 2.4 Contour Maps of CoMFA and CoMSIA Models 9 Chapter 3 Quality Validation Methods of The 3D-QSAR Model 11 3.1 Cost function analysis 11 3.2 Fischer’s cross-validation analysis 12 3.3 PLS Analysis for CoMFA and CoMSIA Models 13 3.4 Goodness of Hit Test Score 14 Chapter 4 Materials 17 4.1 Introduction of B-Raf Kinase 17 4.1.1 Biological Data of B-Raf Kinase 18 4.2 Introduction of Neuraminidase 21 4.2.1 Biological Data of Neuraminidase 22 4.3 Introduction of Heat Shock Protein 90 25 4.3.1 Biological Data of Heat Shock Protein 90 28 4.4 Introduction of FMS-like Tyrosine Kinase 3 30 4.4.1 Biological Data of FMS-like Tyrosine Kinase 3 31 Chapter 5 Results and Discussion 35 5.1 Results of B-Raf Combination Modeling Approach 35 5.1.1 Pharmacophore Generation Results of B-Raf Kinase 35 5.1.2 The Fischer’s Validation of B-Raf pharmacophore hypotheses 37 5.1.3 CoMFA and CoMSIA Generation Results of B-Raf Kinase 38 5.1.4 GH Validation of B-Raf Combination Approach 41 5.1.5 Contour Map Discussion of B-Raf CoMFA and CoMSIA Models 43 5.2 Results of Neuramindase Combination Modeling Approach 50 5.2.1 Pharmacophore Generation Results of Neuraminidase 50 5.2.2 CoMSIA Generation Results of Neuraminidase 53 5.2.3 Contour Map Discussion of Neuraminidase CoMFA and CoMSIA Models 55 5.3 Results of HSP90 Combination Modeling Approach 61 5.3.1 Pharmacophore Generation Results of HSP90 61 5.3.2 The Fischer’s Validation of HSP90 pharmacophore hypotheses 64 5.3.3 CoMFA and CoMSIA Generation Results of HSP90 Kinase 65 5.3.4 GH Validation of HSP90 Combination Approach 68 5.3.5 Feature analysis of the HSP90 pharmacophore hypothesis 70 5.3.6 Contour Map Discussion of HSP90 CoMFA and CoMSIA Models 71 5.4 Results of FLT-3 Kinase Combination Modeling Approach 77 5.4.1 Pharmacophore Generation Results of FLT-3 Kinase 77 5.4.2 The Fischer’s Validation of FLT-3 pharmacophore hypotheses 81 5.4.3 CoMFA and CoMSIA Generation Results of FLT-3 Kinase 82 5.4.4 Contour Map Discussion of FLT-3 CoMFA and CoMSIA Models 85 Chapter 6 Conclusions 91 References 93 Appendix 103

    1. Al-Masri, I. M.; Mohammad, M. K.; Taha, M. O. Discovery of DPP IV inhibitors by pharmacophore modeling and QSAR analysis followed by in silico screening. ChemMedChem. 2008, 3, 1763-79.
    2. Chopra, M.; Gupta, R.; Gupta, S.; Saluja, D. Molecular modeling study on chemically diverse series of cyclooxygenase-2 selective inhibitors: generation of predictive pharmacophore model using catalyst. J. Mol. Model. 2008, 14, 1087-99.
    3. Kansal, N.; Silakari, O.; Ravikumar, M. Three dimensional pharmacophore modelling for c-Kit receptor tyrosine kinase inhibitors. Eur. J. Med. Chem. 2010, 45, 393-404.
    4. Lauria, A.; Ippolito, M.; Fazzari, M.; Tutone, M.; Di Blasi, F.; Mingoia, F.; Almerico, A. M. IKK-beta inhibitors: An analysis of drug-receptor interaction by using Molecular Docking and Pharmacophore 3D-QSAR approaches. J. Mol. Graphics Modell. 2010, 29, 72-81.
    5. Abu Hammad, A. M.; Taha, M. O. Pharmacophore modeling, quantitative structure-activity relationship analysis, and shape-complemented in silico screening allow access to novel influenza neuraminidase inhibitors. J. Chem. Inf. Model. 2009, 49, 978-96.
    6. Markt, P.; Feldmann, C.; Rollinger, J. M.; Raduner, S.; Schuster, D.; Kirchmair, J.; Distinto, S.; Spitzer, G. M.; Wolber, G.; Laggner, C.; Altmann, K. H.; Langer, T.; Gertsch, J. Discovery of novel CB2 receptor ligands by a pharmacophore-based virtual screening workflow. J. Med. Chem. 2009, 52, 369-78.
    7. Taha, M. O.; Dahabiyeh, L. A.; Bustanji, Y.; Zalloum, H.; Saleh, S. Combining ligand-based pharmacophore modeling, quantitative structure-activity relationship analysis and in silico screening for the discovery of new potent hormone sensitive lipase inhibitors. J. Med. Chem. 2008, 51, 6478-94.
    8. R.D. Cramer, D. E. P. a. J. D. B. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988, 110, 5959-67.
    9. Jiang, Y. K. Molecular docking and 3D-QSAR studies on beta-phenylalanine derivatives as dipeptidyl peptidase IV inhibitors. J. Mol. Model. 2010, 16, 1239-49.
    10. Khedkar, V. M.; Ambre, P. K.; Verma, J.; Shaikh, M. S.; Pissurlenkar, R. R.; Coutinho, E. C. Molecular docking and 3D-QSAR studies of HIV-1 protease inhibitors. J. Mol. Model. 2010, 16, 1251-68.
    11. Lei, B. L.; Du, J.; Li, S. Y.; Liu, H. X.; Ren, Y. Y.; Yao, X. J. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) of thiazolone derivatives as hepatitis C virus NS5B polymerase allosteric inhibitors. J. Comput.-Aided Mol. Des. 2008, 22, 711-725.
    12. Klebe, G.; Abraham, U.; Mietzner, T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 1994, 37, 4130-46.
    13. Lu, P.; Wei, X.; Zhang, R. CoMFA and CoMSIA studies on HIV-1 attachment inhibitors. Eur. J. Med. Chem. 2010, 45, 1792-8.
    14. Zeng, J.; Liu, G. X.; Tang, Y.; Jiang, H. L. 3D-QSAR studies on fluoropyrrolidine amides as dipeptidyl peptidase IV inhibitors by CoMFA and CoMSIA. J. Mol. Model. 2007, 13, 993-1000.
    15. Murumkar, P. R.; Zambre, V. P.; Yadav, M. R. Development of predictive pharmacophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA studies for lead optimization, for designing of potent tumor necrosis factor alpha converting enzyme inhibitors. J. Comput.-Aided Mol. Des. 2010, 24, 143-56.
    16. Pasha, F. A.; Muddassar, M.; Neaz, M. M.; Cho, S. J. Pharmacophore and docking-based combined in-silico study of KDR inhibitors. J. Mol. Graphics Modell. 2009, 28, 54-61.
    17. Chen, Y.; Li, H.; Tang, W.; Zhu, C.; Jiang, Y.; Zou, J.; Yu, Q.; You, Q. 3D-QSAR studies of HDACs inhibitors using pharmacophore-based alignment. Eur. J. Med. Chem. 2009, 44, 2868-76.
    18. Lu, X. Y.; Chen, Y. D.; You, Q. D. 3D-QSAR studies of arylcarboxamides with inhibitory activity on InhA using pharmacophore-based alignment. Chem. Biol. Drug Des. 2010, 75, 195-203.
    19. Chaudhaery, S. S.; Roy, K. K.; Saxena, A. K. Consensus superiority of the pharmacophore-based alignment, over maximum common substructure (MCS): 3D-QSAR studies on carbamates as acetylcholinesterase inhibitors. J. Chem. Inf. Model. 2009, 49, 1590-601.
    20. Palomer, A.; Pascual, J.; Cabre, F.; Garcia, M. L.; Mauleon, D. Derivation of pharmacophore and CoMFA models for leukotriene D(4) receptor antagonists of the quinolinyl(bridged)aryl series. J. Med. Chem. 2000, 43, 392-400.
    21. Boppana, K.; Dubey, P. K.; Jagarlapudi, S. A.; Vadivelan, S.; Rambabu, G. Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models. Eur. J. Med. Chem. 2009, 44, 3584-90.
    22. Osman, F. G. D., R. Henry. Metric for analyzing hit lists and pharmacophores. In. Phamacophore Perception, Development, and Use in Drug Design;. 2000, Guner., O. F., Ed.; International University Line: La Jolla, CA, 2000; pp 193-210.
    23. Ravikumar, M.; Pavan, S.; Bairy, S.; Pramod, A. B.; Sumakanth, M.; Kishore, M.; Sumithra, T. Virtual screening of cathepsin k inhibitors using docking and pharmacophore models. Chem. Biol. Drug Des. 2008, 72, 79-90.
    24. Vadivelan, S.; Sinha, B. N.; Irudayam, S. J.; Jagarlapudi, S. A. Virtual screening studies to design potent CDK2-cyclin A inhibitors. J. Chem. Inf. Model. 2007, 47, 1526-35.
    25. Sprague, P. W. Automated chemical hypothesis generation and database searching with Catalyst(R). Perspectives in Drug Discovery and Design. 1995, 3, 1-20.
    26. Mercer, K. E.; Pritchard, C. A. Raf proteins and cancer: B-Raf is identified as a mutational target. Biochimica Et Biophysica Acta-Reviews on Cancer. 2003, 1653, 25-40.
    27. Garnett, M. J.; Marais, R. Guilty as charged: B-RAF is a human oncogene. Cancer Cell. 2004, 6, 313-9.
    28. Karasarides, M.; Chiloeches, A.; Hayward, R.; Niculescu-Duvaz, D.; Scanlon, I.; Friedlos, F.; Ogilvie, L.; Hedley, D.; Martin, J.; Marshall, C. J.; Springer, C. J.; Marais, R. B-RAF is a therapeutic target in melanoma. Oncogene. 2004, 23, 6292-8.
    29. Montagut, C.; Settleman, J. Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett. 2009, 283, 125-34.
    30. Yang, H.; Higgins, B.; Kolinsky, K.; Packman, K.; Go, Z.; Iyer, R.; Kolis, S.; Zhao, S.; Lee, R.; Grippo, J. F.; Schostack, K.; Simcox, M. E.; Heimbrook, D.; Bollag, G.; Su, F. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res. 2010, 70, 5518-27.
    31. Roberts, P. J.; Der, C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene. 2007, 26, 3291-310.
    32. Rubinstein, J. C.; Sznol, M.; Pavlick, A. C.; Ariyan, S.; Cheng, E.; Bacchiocchi, A.; Kluger, H. M.; Narayan, D.; Halaban, R. Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032. J. Transl. Med. 2010, 8, 67.
    33. Schwartz, G. K.; Yazji, S.; Mendelson, D. S.; Dickson, M. A.; Johnston, S. H.; Wang, E. W.; Shannon, P.; Pace, L.; Gordon, M. S. A phase 1 study of XL281, a potent and selective inhibitor of RAF kinases, administered orally to patients (pts) with advanced solid tumors. Ejc Supplements. 2008, 6, 120-120.
    34. Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K. BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007, 35, D198-201.
    35. Lessler, J.; Reich, N. G.; Cummings, D. A.; Nair, H. P.; Jordan, H. T.; Thompson, N. Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school. N Engl J Med. 2009, 361, 2628-36.
    36. Hay, A. J.; Gregory, V.; Douglas, A. R.; Lin, Y. P. The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci. 2001, 356, 1861-70.
    37. Castrucci, M. R.; Donatelli, I.; Sidoli, L.; Barigazzi, G.; Kawaoka, Y.; Webster, R. G. Genetic reassortment between avian and human influenza A viruses in Italian pigs. Virology. 1993, 193, 503-6.
    38. Cohen, J. Swine flu outbreak. Out of Mexico? Scientists ponder swine flu's origins. Science. 2009, 324, 700-2.
    39. Air, G. M.; Laver, W. G. The neuraminidase of influenza virus. Proteins. 1989, 6, 341-56.
    40. Rogers, G. N.; Paulson, J. C.; Daniels, R. S.; Skehel, J. J.; Wilson, I. A.; Wiley, D. C. Single amino acid substitutions in influenza haemagglutinin change receptor binding specificity. Nature. 1983, 304, 76-8.
    41. Holzer, C. T.; von Itzstein, M.; Jin, B.; Pegg, M. S.; Stewart, W. P.; Wu, W. Y. Inhibition of sialidases from viral, bacterial and mammalian sources by analogues of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid modified at the C-4 position. Glycoconj J. 1993, 10, 40-4.
    42. Moscona, A. Neuraminidase inhibitors for influenza. N Engl J Med. 2005, 353, 1363-73.
    43. Gubareva, L. V. Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors. Virus Res. 2004, 103, 199-203.
    44. Andrews, D. M.; Cherry, P. C.; Humber, D. C.; Jones, P. S.; Keeling, S. P.; Martin, P. F.; Shaw, C. D.; Swanson, S. Synthesis and influenza virus sialidase inhibitory activity of analogues of 4-Guanidino-Neu5Ac2en (Zanamivir) modified in the glycerol side-chain. Eur J Med Chem. 1999, 34, 563-74.
    45. Atigadda, V. R.; Brouillette, W. J.; Duarte, F.; Ali, S. M.; Babu, Y. S.; Bantia, S.; Chand, P.; Chu, N.; Montgomery, J. A.; Walsh, D. A.; Sudbeck, E. A.; Finley, J.; Luo, M.; Air, G. M.; Laver, G. W. Potent inhibition of influenza sialidase by a benzoic acid containing a 2-pyrrolidinone substituent. J Med Chem. 1999, 42, 2332-43.
    46. Atigadda, V. R.; Brouillette, W. J.; Duarte, F.; Babu, Y. S.; Bantia, S.; Chand, P.; Chu, N. M.; Montgomery, J. A.; Walsh, D. A.; Sudbeck, E.; Finley, J.; Air, G. M.; Luo, M.; Laver, G. W. Hydrophobic benzoic acids as inhibitors of influenza neuraminidase. Bioorgan Med Chem. 1999, 7, 2487-2497.
    47. Chand, P.; Babu, Y. S.; Bantia, S.; Chu, N. M.; Cole, L. B.; Kotian, P. L.; Laver, W. G.; Montgomery, J. A.; Pathak, V. P.; Petty, S. L.; Shrout, D. P.; Walsh, D. A.; Walsh, G. W. Design and synthesis of benzoic acid derivatives as influenza neuraminidase inhibitors using structure-based drug design. Journal of Medicinal Chemistry. 1997, 40, 4030-4052.
    48. Chand, P.; Kotian, P. L.; Dehghani, A.; El-Kattan, Y.; Lin, T. H.; Hutchison, T. L.; Babu, Y. S.; Bantia, S.; Elliott, A. J.; Montgomery, J. A. Systematic structure-based design and stereoselective synthesis of novel multisubstituted cyclopentane derivatives with potent antiinfluenza activity. J Med Chem. 2001, 44, 4379-92.
    49. Honda, T.; Masuda, T.; Yoshida, S.; Arai, M.; Kaneko, S.; Yamashita, M. Synthesis and anti-influenza virus activity of 7-O-alkylated derivatives related to zanamivir. Bioorg Med Chem Lett. 2002, 12, 1925-8.
    50. Howes, P. C., A.; Evans, D.; Feilden, H.; Smith, P.; Sollis, S.; Taylor, N.; Wonacon, A. 4-Acetylamino-3-(imidazol-1-yl)-benzoic acid as novel inhibitors of influenza sialidase. Eur. J. Med. Chem. 1999, 34, 225– 234.
    51. Kerrigan, S. A. P., R. G.; Smith, P. W.; Stoodley, R. J. Synthesis of (3R*,4R*)-4-acetylamino-3-(pent-3-oxy)cyclohex-1-ene-1-carboxylic acid and its (3S*,4R*)-isomer and their inhibitory action against influenza virus sialidases. Tetrahedron Lett. 2001, 42, 7687– 7690.
    52. Lew, W.; Wu, H.; Chen, X.; Graves, B. J.; Escarpe, P. A.; MacArthur, H. L.; Mendel, D. B.; Kim, C. U. Carbocyclic influenza neuraminidase inhibitors possessing a C3-cyclic amine side chain: synthesis and inhibitory activity. Bioorg Med Chem Lett. 2000, 10, 1257-60.
    53. Lew, W.; Wu, H.; Mendel, D. B.; Escarpe, P. A.; Chen, X.; Laver, W. G.; Graves, B. J.; Kim, C. U. A new series of C3-aza carbocyclic influenza neuraminidase inhibitors: synthesis and inhibitory activity. Bioorg Med Chem Lett. 1998, 8, 3321-4.
    54. Masuda, T.; Shibuya, S.; Arai, M.; Yoshida, S.; Tomozawa, T.; Ohno, A.; Yamashita, M.; Honda, T. Synthesis and anti-influenza evaluation of orally active bicyclic ether derivatives related to zanamivir. Bioorg Med Chem Lett. 2003, 13, 669-73.
    55. Smith, P. W.; Sollis, S. L.; Howes, P. D.; Cherry, P. C.; Starkey, I. D.; Cobley, K. N.; Weston, H.; Scicinski, J.; Merritt, A.; Whittington, A.; Wyatt, P.; Taylor, N.; Green, D.; Bethell, R.; Madar, S.; Fenton, R. J.; Morley, P. J.; Pateman, T.; Beresford, A. Dihydropyrancarboxamides related to zanamivir: a new series of inhibitors of influenza virus sialidases. 1. Discovery, synthesis, biological activity, and structure-activity relationships of 4-guanidino- and 4-amino-4H-pyran-6-carboxamides. J Med Chem. 1998, 41, 787-97.
    56. Wandinger, S. K.; Richter, K.; Buchner, J. The Hsp90 chaperone machinery. J Biol Chem. 2008, 283, 18473-7.
    57. Pearl, L. H.; Prodromou, C.; Workman, P. The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J. 2008, 410, 439-53.
    58. Pratt, W. B.; Morishima, Y.; Osawa, Y. The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J Biol Chem. 2008, 283, 22885-9.
    59. Kamal, A.; Boehm, M. F.; Burrows, F. J. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med. 2004, 10, 283-90.
    60. Maloney, A.; Workman, P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Th. 2002, 2, 3-24.
    61. Mahalingam, D.; Swords, R.; Carew, J. S.; Nawrocki, S. T.; Bhalla, K.; Giles, F. J. Targeting HSP90 for cancer therapy. Br J Cancer. 2009, 100, 1523-9.
    62. Chakraborty, A.; Koldobskiy, M. A.; Sixt, K. M.; Juluri, K. R.; Mustafa, A. K.; Snowman, A. M.; van Rossum, D. B.; Patterson, R. L.; Snyder, S. H. HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proc Natl Acad Sci U S A. 2008, 105, 1134-9.
    63. Maloney, A.; Clarke, P. A.; Naaby-Hansen, S.; Stein, R.; Koopman, J. O.; Akpan, A.; Yang, A.; Zvelebil, M.; Cramer, R.; Stimson, L.; Aherne, W.; Banerji, U.; Judson, I.; Sharp, S.; Powers, M.; deBilly, E.; Salmons, J.; Walton, M.; Burlingame, A.; Waterfield, M.; Workman, P. Gene and protein expression profiling of human ovarian cancer cells treated with the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin. Cancer Res. 2007, 67, 3239-53.
    64. McClellan, A. J.; Xia, Y.; Deutschbauer, A. M.; Davis, R. W.; Gerstein, M.; Frydman, J. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell. 2007, 131, 121-35.
    65. Zhao, R.; Davey, M.; Hsu, Y. C.; Kaplanek, P.; Tong, A.; Parsons, A. B.; Krogan, N.; Cagney, G.; Mai, D.; Greenblatt, J.; Boone, C.; Emili, A.; Houry, W. A. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell. 2005, 120, 715-27.
    66. Ferrarini, M.; Heltai, S.; Zocchi, M. R.; Rugarli, C. Unusual expression and localization of heat-shock proteins in human tumor cells. Int J Cancer. 1992, 51, 613-9.
    67. Eustace, B. K.; Sakurai, T.; Stewart, J. K.; Yimlamai, D.; Unger, C.; Zehetmeier, C.; Lain, B.; Torella, C.; Henning, S. W.; Beste, G.; Scroggins, B. T.; Neckers, L.; Ilag, L. L.; Jay, D. G. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol. 2004, 6, 507-14.
    68. Passarino, G.; Cavalleri, G. L.; Stecconi, R.; Franceschi, C.; Altomare, K.; Dato, S.; Greco, V.; Luca Cavalli Sforza, L.; Underhill, P. A.; de Benedictis, G. Molecular variation of human HSP90alpha and HSP90beta genes in Caucasians. Hum Mutat. 2003, 21, 554-5.
    69. Pearl, L. H.; Prodromou, C. Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem. 2006, 75, 271-94.
    70. Dutta, R.; Inouye, M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci. 2000, 25, 24-8.
    71. Nilapwar, S.; Williams, E.; Fu, C.; Prodromou, C.; Pearl, L. H.; Williams, M. A.; Ladbury, J. E. Structural-thermodynamic relationships of interactions in the N-terminal ATP-binding domain of Hsp90. J Mol Biol. 2009, 392, 923-36.
    72. Roe, S. M.; Prodromou, C.; O'Brien, R.; Ladbury, J. E.; Piper, P. W.; Pearl, L. H. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem. 1999, 42, 260-6.
    73. Ali, M. M.; Roe, S. M.; Vaughan, C. K.; Meyer, P.; Panaretou, B.; Piper, P. W.; Prodromou, C.; Pearl, L. H. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature. 2006, 440, 1013-7.
    74. Colombo, G.; Morra, G.; Meli, M.; Verkhivker, G. Understanding ligand-based modulation of the Hsp90 molecular chaperone dynamics at atomic resolution. Proc Natl Acad Sci U S A. 2008, 105, 7976-81.
    75. Wright, L.; Barril, X.; Dymock, B.; Sheridan, L.; Surgenor, A.; Beswick, M.; Drysdale, M.; Collier, A.; Massey, A.; Davies, N.; Fink, A.; Fromont, C.; Aherne, W.; Boxall, K.; Sharp, S.; Workman, P.; Hubbard, R. E. Structure-activity relationships in purine-based inhibitor binding to HSP90 isoforms. Chem Biol. 2004, 11, 775-85.
    76. Prodromou, C.; Roe, S. M.; O'Brien, R.; Ladbury, J. E.; Piper, P. W.; Pearl, L. H. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 1997, 90, 65-75.
    77. Scroggins, B. T.; Robzyk, K.; Wang, D.; Marcu, M. G.; Tsutsumi, S.; Beebe, K.; Cotter, R. J.; Felts, S.; Toft, D.; Karnitz, L.; Rosen, N.; Neckers, L. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell. 2007, 25, 151-9.
    78. Hawle, P.; Siepmann, M.; Harst, A.; Siderius, M.; Reusch, H. P.; Obermann, W. M. The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol Cell Biol. 2006, 26, 8385-95.
    79. Terasawa, K.; Minami, M.; Minami, Y. Constantly updated knowledge of Hsp90. J Biochem. 2005, 137, 443-7.
    80. Retzlaff, M.; Stahl, M.; Eberl, H. C.; Lagleder, S.; Beck, J.; Kessler, H.; Buchner, J. Hsp90 is regulated by a switch point in the C-terminal domain. EMBO Rep. 2009, 10, 1147-53.
    81. Chiosis, G.; Vilenchik, M.; Kim, J.; Solit, D. Hsp90: the vulnerable chaperone. Drug Discov Today. 2004, 9, 881-8.
    82. Neckers, L. Using natural product inhibitors to validate Hsp90 as a molecular target in cancer. Current Topics in Medicinal Chemistry. 2006, 6, 1163-1171.
    83. Sharp, S.; Workman, P. Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res. 2006, 95, 323-48.
    84. Powers, M. V.; Workman, P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett. 2007, 581, 3758-69.
    85. DeBoer, C.; Meulman, P. A.; Wnuk, R. J.; Peterson, D. H. Geldanamycin, a new antibiotic. J Antibiot (Tokyo). 1970, 23, 442-7.
    86. Delmotte, P.; Delmotte-Plaque, J. A new antifungal substance of fungal origin. Nature. 1953, 171, 344.
    87. Schulte, T. W.; Neckers, L. M. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol. 1998, 42, 273-9.
    88. Kaur, G.; Belotti, D.; Burger, A. M.; Fisher-Nielson, K.; Borsotti, P.; Riccardi, E.; Thillainathan, J.; Hollingshead, M.; Sausville, E. A.; Giavazzi, R. Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clin Cancer Res. 2004, 10, 4813-21.
    89. Sydor, J. R.; Normant, E.; Pien, C. S.; Porter, J. R.; Ge, J.; Grenier, L.; Pak, R. H.; Ali, J. A.; Dembski, M. S.; Hudak, J.; Patterson, J.; Penders, C.; Pink, M.; Read, M. A.; Sang, J.; Woodward, C.; Zhang, Y.; Grayzel, D. S.; Wright, J.; Barrett, J. A.; Palombella, V. J.; Adams, J.; Tong, J. K. Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90. Proc Natl Acad Sci U S A. 2006, 103, 17408-13.
    90. Taldone, T.; Sun, W.; Chiosis, G. Discovery and development of heat shock protein 90 inhibitors. Bioorg Med Chem. 2009, 17, 2225-35.
    91. Banerji, U.; O'Donnell, A.; Scurr, M.; Pacey, S.; Stapleton, S.; Asad, Y.; Simmons, L.; Maloney, A.; Raynaud, F.; Campbell, M.; Walton, M.; Lakhani, S.; Kaye, S.; Workman, P.; Judson, I. Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol. 2005, 23, 4152-61.
    92. Ramanathan, R. K.; Trump, D. L.; Eiseman, J. L.; Belani, C. P.; Agarwala, S. S.; Zuhowski, E. G.; Lan, J.; Potter, D. M.; Ivy, S. P.; Ramalingam, S.; Brufsky, A. M.; Wong, M. K.; Tutchko, S.; Egorin, M. J. Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin Cancer Res. 2005, 11, 3385-91.
    93. Weigel, B. J.; Blaney, S. M.; Reid, J. M.; Safgren, S. L.; Bagatell, R.; Kersey, J.; Neglia, J. P.; Ivy, S. P.; Ingle, A. M.; Whitesell, L.; Gilbertson, R. J.; Krailo, M.; Ames, M.; Adamson, P. C. A phase I study of 17-allylaminogeldanamycin in relapsed/refractory pediatric patients with solid tumors: a Children's Oncology Group study. Clin Cancer Res. 2007, 13, 1789-93.
    94. Cools, J.; Mentens, N.; Furet, P.; Fabbro, D.; Clark, J. J.; Griffin, J. D.; Marynen, P.; Gilliland, D. G. Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia. Cancer Res. 2004, 64, 6385-9.
    95. Furet, P.; Bold, G.; Meyer, T.; Roesel, J.; Guagnano, V. Aromatic interactions with phenylalanine 691 and cysteine 828: a concept for FMS-like tyrosine kinase-3 inhibition. Application to the discovery of a new class of potential antileukemia agents. J Med Chem. 2006, 49, 4451-4.
    96. Kiyoi, H.; Shiotsu, Y.; Ozeki, K.; Yamaji, S.; Kosugi, H.; Umehara, H.; Shimizu, M.; Arai, H.; Ishii, K.; Akinaga, S.; Naoe, T. A novel FLT3 inhibitor FI-700 selectively suppresses the growth of leukemia cells with FLT3 mutations. Clin Cancer Res. 2007, 13, 4575-82.
    97. Markovic, A.; MacKenzie, K. L.; Lock, R. B. FLT-3: a new focus in the understanding of acute leukemia. Int J Biochem Cell Biol. 2005, 37, 1168-72.
    98. Parcells, B. W.; Ikeda, A. K.; Simms-Waldrip, T.; Moore, T. B.; Sakamoto, K. M. FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia. Stem Cells. 2006, 24, 1174-84.
    99. Fiedler, W.; Serve, H.; Dohner, H.; Schwittay, M.; Ottmann, O. G.; O'Farrell, A. M.; Bello, C. L.; Allred, R.; Manning, W. C.; Cherrington, J. M.; Louie, S. G.; Hong, W.; Brega, N. M.; Massimini, G.; Scigalla, P.; Berdel, W. E.; Hossfeld, D. K. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood. 2005, 105, 986-93.
    100. Cheng, Y.; Paz, K. Tandutinib, an oral, small-molecule inhibitor of FLT3 for the treatment of AML and other cancer indications. IDrugs. 2008, 11, 46-56.
    101. Odgerel, T.; Kikuchi, J.; Wada, T.; Shimizu, R.; Futaki, K.; Kano, Y.; Furukawa, Y. The FLT3 inhibitor PKC412 exerts differential cell cycle effects on leukemic cells depending on the presence of FLT3 mutations. Oncogene. 2008, 27, 3102-10.
    102. Knapper, S.; Mills, K. I.; Gilkes, A. F.; Austin, S. J.; Walsh, V.; Burnett, A. K. The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood. 2006, 108, 3494-503.
    103. Lopes de Menezes, D. E.; Peng, J.; Garrett, E. N.; Louie, S. G.; Lee, S. H.; Wiesmann, M.; Tang, Y.; Shephard, L.; Goldbeck, C.; Oei, Y.; Ye, H.; Aukerman, S. L.; Heise, C. CHIR-258: a potent inhibitor of FLT3 kinase in experimental tumor xenograft models of human acute myelogenous leukemia. Clin Cancer Res. 2005, 11, 5281-91.
    104. Zhou, J.; Khng, J.; Jasinghe, V. J.; Bi, C.; Neo, C. H.; Pan, M.; Poon, L. F.; Xie, Z.; Yu, H.; Yeoh, A. E.; Lu, Y.; Glaser, K. B.; Albert, D. H.; Davidsen, S. K.; Chen, C. S. In vivo activity of ABT-869, a multi-target kinase inhibitor, against acute myeloid leukemia with wild-type FLT3 receptor. Leuk Res. 2008, 32, 1091-100.
    105. Shiotsu, Y.; Kiyoi, H.; Ishikawa, Y.; Tanizaki, R.; Shimizu, M.; Umehara, H.; Ishii, K.; Mori, Y.; Ozeki, K.; Minami, Y.; Abe, A.; Maeda, H.; Akiyama, T.; Kanda, Y.; Sato, Y.; Akinaga, S.; Naoe, T. KW-2449, a novel multikinase inhibitor, suppresses the growth of leukemia cells with FLT3 mutations or T315I-mutated BCR/ABL translocation. Blood. 2009, 114, 1607-17.
    106. Zarrinkar, P. P.; Gunawardane, R. N.; Cramer, M. D.; Gardner, M. F.; Brigham, D.; Belli, B.; Karaman, M. W.; Pratz, K. W.; Pallares, G.; Chao, Q.; Sprankle, K. G.; Patel, H. K.; Levis, M.; Armstrong, R. C.; James, J.; Bhagwat, S. S. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009, 114, 2984-92.
    107. Chachra, R.; Rizzo, R. C. Origins of resistance conferred by the R292K neuraminidase mutation via molecular dynamics and free energy calculations. Journal of Chemical Theory and Computation. 2008, 4, 1526-1540.
    108. Stoll, V.; Stewart, K. D.; Maring, C. J.; Muchmore, S.; Giranda, V.; Gu, Y. G.; Wang, G.; Chen, Y.; Sun, M.; Zhao, C.; Kennedy, A. L.; Madigan, D. L.; Xu, Y.; Saldivar, A.; Kati, W.; Laver, G.; Sowin, T.; Sham, H. L.; Greer, J.; Kempf, D. Influenza neuraminidase inhibitors: structure-based design of a novel inhibitor series. Biochemistry. 2003, 42, 718-27.
    109. Knox, A. J.; Price, T.; Pawlak, M.; Golfis, G.; Flood, C. T.; Fayne, D.; Williams, D. C.; Meegan, M. J.; Lloyd, D. G. Integration of ligand and structure-based virtual screening for the identification of the first dual targeting agent for heat shock protein 90 (Hsp90) and tubulin. J Med Chem. 2009, 52, 2177-80.
    110. Brough, P. A.; Barril, X.; Borgognoni, J.; Chene, P.; Davies, N. G.; Davis, B.; Drysdale, M. J.; Dymock, B.; Eccles, S. A.; Garcia-Echeverria, C.; Fromont, C.; Hayes, A.; Hubbard, R. E.; Jordan, A. M.; Jensen, M. R.; Massey, A.; Merrett, A.; Padfield, A.; Parsons, R.; Radimerski, T.; Raynaud, F. I.; Robertson, A.; Roughley, S. D.; Schoepfer, J.; Simmonite, H.; Sharp, S. Y.; Surgenor, A.; Valenti, M.; Walls, S.; Webb, P.; Wood, M.; Workman, P.; Wright, L. Combining hit identification strategies: fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone. J Med Chem. 2009, 52, 4794-809.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE