研究生: |
林榕茂 Lin, Jung-Mao |
---|---|
論文名稱: |
A DoF-Based Spectral Detector and A Baseband Processor for Multiuser MIMO-OFDMA Based Cognitive Radio Systems 應用於多使用者、多輸入多輸出正交分頻多工存取感知無線電系統的自由度根基頻譜偵測器和基頻處理器 |
指導教授: |
馬席彬
Ma, Hsi-Pin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 192 |
中文關鍵詞: | 頻譜感測 、適應性多窗頻譜估測 、加權部分重疊平均 、強訊號干擾 、當地最強大測試 、專用積體電路 、系統單晶片 、載波漂移 、正交分頻多工 、正交分頻多工存取 、感知無線電 、自由度 、多輸入多輸出 |
外文關鍵詞: | spectrum sensing, adaptive multitaper spectral estimation (AMTSE), weighted overlapped segment averaging (WOSA), strong interference, locally most powerful test (LMPT), application-specific integrated circuit (ASIC), system-on-chip (SoC), carrier frequency offset (CFO), orthogonal frequency division multiplexing (OFDM), orthogonal frequency division multiple access (OFDMA), cognitive radio (CR), degree of freedom (DoF), multiple-input multiple-output (MIMO) |
相關次數: | 點閱:5 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
無線通訊技術的普及促使頻寬使用以及高傳輸速率(data rate)行動通訊的需求越來越大,再加上目前頻譜資源的短缺和其低使用率的情形,讓傳統頻譜分配的制度重新受到檢視。頻譜池(spectrum pooling)的觀念是將數個已授權頻段(licensed-band)組成共同的頻譜池(spectrum pool),讓出租用戶(rental user)能在授權用戶(licensed user)的允許下存取這些授權頻段進而提升頻譜的使用率(spectral utilization)。然而,頻譜池的觀念需要改善原本授權用戶所使用的控制機制和硬體設備,因此降低了實做上的彈性(flexibility)和可行性(feasibility)。相較之下,感知無線電(cognitive radio)因為能讓這些未授權的使用者自發性地使用已被授權但空出來的頻譜、而不需經過授權用戶的允許,因此實行上比頻譜池更為方便且更能提高頻譜的使用率(spectrum efficiency)。 除此之外,感知無線電結合正交分頻多工(orthogonal frequency division multiplexing, OFDM)或正交分頻多工存取(orthogonal frequency division multiple access, OFDMA)的傳輸技術因為能夠彈性且適應性地存取頻譜,理論上能達到最大的頻譜使用率,此多載波的傳輸技術也有高傳輸速率和可靠傳輸的優點。因此,一個基於正交分頻多工/正交分頻多工存取傳輸的感知無線電系統儼然被認為是解決目前頻譜壅塞不足最有效的一個方法。
在本論文中,我們主要探討發展基於正交分頻多工/正交分頻多工存取傳輸的感知無線電系統所面臨的問題,進而提出相對應的解決方法。為了解決在頻譜感測(spectrum sensing)時,由授權用戶造成的強訊號干擾(strong interference)問題,提出一個適用於寬頻(wideband)環境、基於自由度(degree of freedom)的頻譜偵測器(spectral detector),此偵測器可利用從頻譜估測(spectral estimation)所得到的自由度改善偵測效能(detection performance),此外,所提出的偵測器亦可針對強訊號干擾的環境執行兩階段不同頻譜解析度(spectral resolution)的頻譜感測,此二階段分別為粗寬頻感測(coarse wideband sensing)和細窄頻感測(fine narrowband sensing),用以提高對隱藏性主要用戶(hidden primary user)的偵測率,相較於傳統其他的方式如能量偵測(energy detection)或基於特徵值偵測(eigenvalue-based detection),在寬頻強訊號干擾的環境中,所提出的偵測器有更強健(robust)的偵測效能表現。
另外,為了在感知無線電系統中達到可靠(reliable)且有彈性(flexible)的正交分頻多工傳輸,多工存取和同步(synchronization),這兩個關鍵的技術和其問題就必須被考慮。在本論文中,我們提出了一個適用於多使用者的正交分頻多工存取系統,同時考量了上行(uplink)和下行(downlink)兩種傳輸情況。在下行部份,所提出的接收機(receiver)包含了載波漂移(carrier frequency offset, CFO)和取樣頻率偏移(sampling frequency offset, SFO)的估測及補償機制、通道估測及補償、符元時間同步,以及取樣增加或刪除(add/drop)這些功能。至於上行傳輸部份,我們提出一個可配置(configurable)於單輸入單輸出(single-input single output, SISO)以及多輸入多輸出 (multiple-input multiple-output, MIMO)的基頻處理器,此處理器能以正交分頻多工或者正交分頻多工存取來傳輸,且具有效率功耗(power efficient)的優點。為了解決在多使用者傳輸下的載波漂移問題,提出一個基於不同載波間干擾消除(inter-carrier interference-based)的載波漂移估測器,利用迭代搜尋最大訊號對干擾雜訊比(signal-to-interference-noise ratio, SINR)的方式分別估出各個使用者的載波漂移量,相較於其他演算法,此載波漂移估測器對於多輸入多輸出和多使用者傳輸的傳輸結構(transmission configuration)所遭受的載波漂移大小有較強建的估測效果。此外,針對複雜的不同載波間干擾以及多重擷取干擾(multiple access interference, MAI)消除等運算,使用泰勒展開式(Taylor series expansion)對干擾重建做化簡,提出一個比直接實作減少78%硬體複雜度的硬體架構。通道估測則採取簡單的二維線性估測法,有效地幫助載波漂移估測以及追蹤時變的多通道(time-variant multipath channel)。在多輸入多輸出偵測器(MIMO detector)方面,採用兩種不同演算法,貝爾實驗室垂直式分層時空(vertical Bell Laboratory layered space-time, V-BLAST)方法和貝爾實驗室垂直式分層時空搭配最大似然法(maximum likelihood, ML)的簡化最大似然偵測法(V-ML),分別運用在載波漂移估測和資料偵測兩階段,以同時達到減少輸出延遲(output latency)和接近理想最大似然法的位元錯誤率(bit-error-rate, BER)偵測效能的結果。上行接收機裡主要的功能模組(包含不同載波間干擾以及多重擷取干擾的消除器、載波漂移估測器、通道估測器和多輸入多輸出偵測器等)透過台積電(Taiwan Semiconductor Manufacturing Company, TSMC)的0.13 μm 1P8M製程下線,製作成專用積體電路(application-specific integrated circuit, ASIC),量測結果顯示,所製作的晶片有高達2.31 Mbps/mW的功耗效率以及相較於理論值低於1.5 dB的實做誤差(位元錯誤率的效能)。整個所提出的上行收發機(transceiver)更整合於系統單晶片(system-on-chip, SoC)平台做最後的驗證和展示以證明所提出系統的高度整合效力及其實用性。
Ubiquitous wireless applications drive the growing demand for more spectrum access opportunity and higher data rate mobile communications. The scarcity of spectrum resources and the poor spectrum utilization urges the re-examination of old spectrum allocation policies. The concept of spectrum pooling enables public access to a common spectrum pool which is comprised of several licensed frequency bands hosted by licensed users. Rental users can access the unused frequency bands in the common pool with the permission of the licensed users. However, spectrum pooling requires the improvement of control and infrastructure framework for the licensed users, which makes the implementation inflexible. On the contrary, cognitive radio (CR), which allows unlicensed users (or usually called secondary users in CR networks) to access the available spectrum autonomously, provides a more feasible solution to improve spectrum efficiency. Moreover, a CR system incorporating orthogonal frequency division multiplexing
(OFDM)/orthogonal frequency division multiple access (OFDMA) transmission can perform spectrum access in a highly flexible and adaptable manner to maximize spectrum efficiency; meanwhile, the multicarrier modulation technique can also achieve a reliable high data rate transmission. Therefore, an OFDM/OFDMA-based CR system
has become a promising solution to solve the spectrum crowding and spectrum deficiency problems.
In this dissertation, design challenges of an OFDM/OFDMA-based CR system are investigated. To overcome the interference problem caused by licensed users (or usually called primary users in CR networks) in spectrum sensing, a degree of freedom (DoF)-based spectral detector that is applicable to wideband strong interference environments is proposed. By exploiting the DoF obtained from spectral estimation, the proposed detector provides a higher DoF for the improvement of detection performance. Besides, the detector can perform two-phase sensing with adjustable spectral resolution. This makes the system robust to strong interference environments and compatible with wideband spectrum sensing applications.
Moreover, to achieve a reliable and flexible OFDM transmission in a CR system, multiple access schemes and synchronization issues should be considered. In this dissertation, a multiuser OFDMA system, which can offer both uplink and downlink communications, is presented. For downlink communications, the proposed receiver consists of carrier frequency offset (CFO)/sampling frequency offset (SFO) estimation/compensation, channel estimation/equalization, and sampling add/drop function for symbol timing synchronization. As for uplink communications, a configurable (for single-input singleoutput (SISO)/multiple-input multiple-output (MIMO) and OFDM/OFDMA communications) and power efficient multiuser MIMO-OFDMA baseband processor will be considered. To solve the CFO problem in multiuser transmission, an inter-carrier interference (ICI)-based CFO estimator is implemented based on an iterative search criterion of maximum signal-to-interference-plus-noise ratio (SINR). Compared to state-of-theart methods, the proposed CFO estimator is more robust to transmission configurations
(MIMO and multiuser) and CFO variations. Moreover, the authors propose an efficient architecture that reduces the hardware complexity by 78% compared to the direct implementation architecture by employing Taylor series expansion for ICI/multipleaccess interference (MAI) cancellation. Meanwhile, a 2D linear channel estimator is also proposed to assist the CFO estimator and track the time-variant multipath channel. Two kinds of MIMO detector, vertical Bell Laboratory layered space-time (V-BLAST) and
V-BLAST with maximum likelihood (V-ML), are adopted to minimize output latency and achieve the best ML bit-error-rate (BER) performance. An application-specific integrated
circuit (ASIC) fabricated by 0.13 μm 1P8M CMOS technology is measured with 2.31 Mbps/mW power efficiency and less than 1.5 dB implementation loss. In addition, the whole transceiver is integrated and verified by a system-on-chip (SoC) platform to demonstrate its efficacy.
[1] J. Mitola, “Cognitive radio for flexible mobile multimedia communications,” in Proc. IEEE MoMuC ’99, Nov. 1999, pp. 3–10.
[2] ——, “Cognitive radio an integrated agent architecture for software defined radio,” Ph.D. dissertation, KTH Royal Institute of Technology, Stockholm, May 2000.
[3] ——, “Cognitive radio - model-based competence for software radios,” Master’s thesis, KTH Royal Institute of Technology, Stockholm, 1999.
[4] D. Cabric, “Cognitive radios: System design perspective,” Ph.D. dissertation, University of California, Berkeley, USA, Dec. 2007.
[5] FCC, “Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies,” in Notice of Proposed Rule Making
(NPRM) FCC Docket No. 03-322, Dec. 2003.
[6] D. Cabric, I. D. O’Donnell, M. S.-W. Chen, and R. W. Brodersen, “Spectrum sharing radios,” IEEE Circuits Syst. Mag., vol. 6, no. 2, pp. 30–45, 2006.
[7] H. Mahmoud, T. Yucek, and H. Arslan, “OFDM for cognitive radio: merits and challenges,” IEEE Wireless Commun. Mag., vol. 16, no. 2, pp. 6–15, Apr. 2009.
[8] U. Berthold, F. K. Jondral, S. Brandes, and M. Schnell,“OFDM-based overlay systems: A promising approach for enhancing spectral efficiency,” IEEE Commun. Mag., vol. 45, no. 12, pp. 52–58, Dec. 2007.
[9] S. Y. Tu, K. C. Chen, and R. Prasad, “Spectrum sensing of OFDMA systems for cognitive radio networks,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3410– 3425, Sept. 2009.
[10] FCC, “First report and order,” in FCC Docket No. 02-48, Feb. 2002.
[11] Z. Honggang, Z. Xiaofei, K. Y. Yazdandoost, and I. Chlamtac, “Multiple signal waveforms adaptation in cognitive ultra-wideband radio evolution,” IEEE J. Sel. Areas Commun., vol. 24, no. 4, pp. 878–884, Apr. 2006.
[12] R. Yang, Z. Zhou, L. Zhang, and C. Yu, “Detection and avoidance scheme for direct-sequence ultra-wideband system: a step towards cognitive radio,” Communications, IET, vol. 2, no. 8, pp. 1043–1050, Sept. 2008.
[13] F. C. B. F. Muller, A. Klautau, and C. R. C. M. da Silva, “Performance analysis of a multiband OFDM UWB system in the presence of narrowband interference,” in Proc. IEEE GLOBECOM, Nov. 2009, pp. 1–5.
[14] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Upper Saddle River, NJ: Prentice-Hall PTR, 1998.
[15] R. Tandra and A. Sahai, “Fundamental limits on detection in low SNR under noise uncertainty,” in Proc. IEEE Wireless Networks, Commun. and Mobile Computing Conf., vol. 1, Maui, HI, June 2005, pp. 464–469.
[16] ——, “SNR walls for signal detection,” IEEE J. Sel. Topics Signal Process., vol. 2, no. 1, pp. 4–17, Feb. 2008.
[17] Y. Zeng and Y. C. Liang, “Covariance based signal detections for cognitive radio,” in Proc. IEEE DySPAN ’07, Dublin, Ireland, 2007, pp. 202–207.
[18] ——, “Eigenvalue-based spectrum sensing algorithms for cognitive radio,” IEEE Trans. Commun., vol. 57, pp. 1784–1793, June 2009.
[19] F. Capar, I. Martoyo, T. Weiss, and F. Jondral, “Analysis of coexistence strategies for cellular and wireless local area networks,” in Proc. IEEE VTC, vol. 3, Oct. 2003, pp. 1812–1816.
[20] P. Papadimitratos, S. Sankaranarayanan, and A. Mishra, “OFDM-based overlay systems: A promising approach for enhancing spectral efficiency,” IEEE Commun. Mag., vol. 43, no. 12, pp. supl.10–supl.14, Dec. 2005.
[21] P. Pawelczak, R. Prasad, and R. Hekmat, “Opportunistic spectrum multichannel OFDMA,” in Proc. IEEE ICC ’07, June 2007, pp. 5439–5444.
[22] T. A. Weiss and F. K. Jondral, “Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency,” IEEE Commun. Mag., vol. 42, no. 3, pp.
S8–14, Mar. 2007.
[23] H. Tang, “Some physical layer issues of wide-band cognitive radio systems,” in Proc. IEEE DySPAN ’05, Baltimore, MD, Nov 2005, pp. 151–159.
[24] J. M. Lin, H. Y. Yu, Y. J. Wu, and H. P. Ma, “A power efficient baseband engine for multiuser mobile MIMO-OFDMA communications,” IEEE Trans. Circuits Syst. I, vol. 57, no. 7, pp. 1779–1792, July 2010.
[25] J. M. Lin and H. P. Ma, “A high performance baseband transceiver for SISO-/MIMO-OFDMA uplink communications,” IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3330–3334, July 2009.
[26] T. Weiss, J. Hillenbrand, A. Krohn, and F. K. Jondral, “Mutual interference in OFDM-based spectrum pooling systems,” in Proc. IEEE VTC, vol. 4, May 2004, pp. 1873–1877.
[27] I. Cosovic, S. Brandes, and M. Schnell, “Subcarrier weighting: a method for sidelobe suppression in OFDM systems,” IEEE Commun. Lett., vol. 10, no. 6, pp. 444–446, June 2006.
[28] S. Brandes, I. Cosovic, and M. Schnell, “Sidelobe suppression in OFDM systems by insertion of cancellation carriers,” in Proc. IEEE VTC, vol. 1, Sept. 2005, pp. 152–156.
[29] ——, “Reduction of out-of-band radiation in OFDM systems by insertion of cancellation carriers,” IEEE Commun. Lett., vol. 10, no. 6, pp. 420–422, June 2006.
[30] Z. Yuan, S. Pagadarai, and A. M. Wyglinski, “Cancellation carrier technique using genetic algorithm for OFDM sidelobe suppression,” in Proc. IEEE Mil. Commun. Conf., San Diego, CA, Nov. 2008, pp. 1–5.
[31] Z. Yuan and A. M. Wyglinski, “On sidelobe suppression for multicarrier-based transmission in dynamic spectrum access networks,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1998–2006, May 2010.
[32] S. Pagadarai, R. Rajbanshi, A. M. Wyglinski, and G. J. Minden, “Sidelobe suppression for OFDM-based cognitive radios using constellation expansion,” in Proc. IEEE WCNC, Mar. 2008, pp. 888–893.
[33] J. Yang, R. W. Brodersen, and D. Tse, “Addressing the dynamic range problem in cognitive radios,” in Proc. IEEE Int. Conf. Commun. (ICC), June 2007, pp. 5183–5188.
[34] R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Sel. Areas Commun., vol. 17, no. 4, pp. 539–550, Apr. 1999.
[35] M. A. Soderstrand, T. G. Johnson, R. H. Strandberg, H. H. L. Jr., and K. V. Rangarao, “Suppression of multiple narrow-band interference using real-time adaptive notch filters,” IEEE Trans. Circuits Syst. II, vol. 44, no. 3, pp. 217–225, Mar. 1997.
[36] S. R. D. Paulo, A. B. da Silva Eduardo, and L. N. Sergio, Digital Signal Processing: System Analysis and Design. The Edinburgh Building, Cambridge CB2 2RU, United Kingdom: Cambridge University Express, 2002.
[37] C. Muschallik, “Improving an OFDM reception using an adaptive nyquist windowing,” IEEE Trans. Consum. Electron., vol. 42, no. 3, pp. 259–269, Aug. 1996.
[38] B. Farhang-Boroujeny, “A square-root Nyquist (M) filter design for digital communication systems,” IEEE Trans. Signal Process., vol. 56, no. 5, pp. 2127–2132, May 2008.
[39] S. Kapoor and S. Nedic, “Interference suppression in DMT receivers using windowing,” in Proc. IEEE Int. Conf. Commun. (ICC), vol. 2, New Orleans, LA, June 2000, pp. 778–782.
[40] A. J. Redfern, “Receiver window design for multicarrier communication systems,” IEEE J. Sel. Areas Commun., vol. 20, no. 5, pp. 1029–1036, June 2002.
[41] Y.-P. Lin and S. M. Phoong, “Window designs for DFT-based multicarrier systems,” IEEE Trans. Signal Process., vol. 53, no. 3, pp. 1015–1024, Mar. 2005.
[42] D. J. Thomson, “Spectrum estimation and harmonic analysis,” Proc. IEEE, vol. 20, pp. 1055–1096, Sept. 1982.
[43] S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE, vol. 97, pp. 849–877, May 2009.
[44] D. J. Thomson, “Jackknifing multitaper spectrum estimates,” IEEE Signal Process. Mag., vol. 24, no. 4, pp. 20–30, July 2007.
[45] B. Farhang-Boroujeny, “Filter bank spectrum sensing for cognitive radios,” IEEE Trans. Signal Process., vol. 56, no. 5, pp. 1801–1811, May 2008.
[46] F. Sjoberg, R. Nilsson, P. O. Borjesson, P. Odling, B.Wiese, and J. A. C. Bingham, “Digital RFI suppression in DMT-based VDSL systems,” IEEE Trans. Circuits Syst. I, vol. 51, no. 11, pp. 2300–2312, Nov. 2004.
[47] J. A. C. Bingham, “RFI suppression in multicarrier transmission system,” in Proc. IEEE GLOBECOM, vol. 2, London, U.K., Nov. 1996, pp. 1026–1030.
[48] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, “Optimum receiver design for OFDM-based broadband transmission - Part II: A case study,” IEEE Trans. Commun., vol. 49, no. 4, pp. 571–578, Apr. 2001.
[49] K. C. Hung and D. W. Lin, “Joint detection of integral carrier frequency offset and preamble index in OFDMA WiMAX downlink synchronization,” in Proc. IEEE WCNC, Mar. 2007, pp. 1959–1964.
[50] T. C. W. Schenk and A. V. Zelst, “Frequency synchronization for MIMO OFDM wireless LAN systems,” in Proc. IEEE VTC, vol. 2, Oct. 2003, pp. 781–785.
[51] Z. En, Z. Xing, Z. Hui, and W. Wenbo, “Synchronization algorithms for MIMO OFDM systems,” in Proc. IEEE WCNC, vol. 1, Mar. 2005, pp. 18–22.
[52] G. L. Stuber, J. R. Barry, S. W. McLaughlin, Y. G. Li, M. A. Ingram, and T. G. Pratt, “Broadband MIMO-OFDM wireless communications,” Proc. IEEE, vol. 92, pp. 271–294, Feb. 2004.
[53] G. Feng, D. Li, H. Yang, and C. Liyu, “A novel timing synchronization method for distributed MIMO-OFDM system,” in Proc. IEEE VTC, vol. 4, May 2006, pp. 1933–1936.
[54] F. Xiaoyu and M. Hlaing, “Initial uplink synchronization and power control (ranging process) for OFDMA systems,” in Proc. IEEE GLOBECOM, vol. 6, 2004, pp. 3999–4003.
[55] J. M. Lin and H. P. Ma, “A baseband transceiver for IEEE 802.16 OFDMA downlink communications,” in Proc. IEEE Sarnoff Symp., Princeton, NJ, Mar. 2006, pp. 1–4.
[56] T. Weiss, A. Krohn, F. Capar, I. Martoyo, and F. K. Jondral, “Synchronization algorithms and preamble concepts for spectrum pooling systems,” in IST Mobile and Wireless Telecommun. Summit, Aveiro, Portugal, Jun 2003.
[57] J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide. Sams Publishing, 2001.
[58] M. Morelli and M. Moretti, “Robust frequency synchronization for OFDM-based cognitive radio systems,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5346–5355, Dec. 2008.
[59] L. Sanguinetti, M. Morelli, and H. V. Poor, “Uplink synchronization in OFDMA spectrum-sharing systems,” IEEE Trans. Signal Process., vol. 58, no. 5, pp. 2771–2782, May 2010.
[60] L. Yu, L. B. Milstein, J. G. Proakis, and B. D. Rao, “Performance degradation due to MAI in OFDMA-based cognitive radio,” in Proc. IEEE Int. Conf. Commun. (ICC), Cape Town, May 2010, pp. 1–5.
[61] 802.16e: IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed and Mobile BroadbandWireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands and Corrigendum 1, IEEE Std. 802.16e-2005, Dec. 2005.
[62] D. Slepian, “Prolate spheroidal wave functions, Fourier analysis and uncertainty - V: The discrete case,” Bell Syst. Tech. J., vol. 57, pp. 1371–1429, 1978.
[63] D. B. Percival and A. T. Walden, Spectral Analysis for Physical Applications. London,U.K.: Cambridge University Press, 1993.
[64] T. W. Chiang, “Optimal detector for multitaper spectrum estimator in cognitive radios,” Master’s thesis, National Tsing Hua University, Hsinchu, Taiwan, 2009.
[65] FCC, “Spectrum policy task force,” Tech. Rep. ET Docket, no. 02-135, Nov. 2002.
[66] J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more personal,” IEEE Personal Commun. Mag., vol. 6, pp. 13–18, Aug. 1999.
[67] B. H. Juang, G. Y. Li, and M. Jun, “Signal processing in cognitive radio,” Proc. IEEE, vol. 97, pp. 805–823, May 2009.
[68] S. Chaudhari, V. Koivunen, and H. V. Poor, “Distributed autocorrelation-based sequential detection of OFDM signals in cognitive radios,” in Proc. IEEE CrownCom ’07, Singapore, May 2008, pp. 1–6.
[69] Z. Quan, S. Cui, A. H. Sayed, and H. V. Poor, “Optimal multiband joint detection for spectrum sensing in cognitive radio networks,” IEEE Trans. Signal Process., vol. 57, no. 3, pp. 1128–1140, Nov. 2009.
[70] T. H. Yu, S. Rodriguez-Parera, S. Markovic, and D. Cabric, “Cognitive radio wideband spectrum sensing using multitap windowing and power detection with threshold adaptation,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2010, pp. 1–6.
[71] P. D. Welch, “The use of FFT for the estimation of power spectra: A method based on time averaging over short modified periodograms,” IEEE Trans. Audio Electroacoust., vol. 15, pp. 70–73, June 1967.
[72] E. A. K. Cohen and A. T. Walden, “A statistical study of temporally smoothed wavelet coherence,” IEEE Trans. Signal Process., vol. 58, no. 6, pp. 2964–2973, June 2010.
[73] G. C. Carter, “Coherence and time delay estimation,” Proc. IEEE, vol. 75, no. 2, pp. 236–255, Feb. 1987.
[74] M. S. Bartlett, “Smoothing periodograms from time series with continuous spectra,” Nature, vol. 161, pp. 686–687, May 1948.
[75] J. Antoni and J. Schoukens, “Optimal settings for measuring frequency response functions with weighted overlapped segment averaging,” IEEE Trans. Instrum. Meas., vol. 58, no. 9, pp. 3276–3287, Sept. 2009.
[76] J. Schoukens, Y. Rolain, and R. Pintelon, “Analysis of windowing/leakage effects in frequency response function measurements,” Automatica, vol. 42, no. 1, pp. 27–38, Jan. 2006.
[77] B. Chen, T. Liu, F. Shu, and J. Wang, “On performance comparison of wideband multiple primary user detection methods in cognitive radios,” in Proc. IEEE WiCOM ’09, Beijing, Sept. 2009, pp. 1–4.
[78] T. P. Bronez, “On the performance advantage of multitaper spectral analysis,” IEEE Trans. Signal Process., vol. 40, no. 12, pp. 2941–2946, Dec. 1992.
[79] P. Stoica and T. Sundin, “On nonparametric spectral estimation,” Circuits, Syst., Signal Process., vol. 18, pp. 169–181, 1999.
[80] S. Haykin, “Cognitive radio: Brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, no. 3, pp. 201–205, Feb. 2005.
[81] S. Haykin and A. Steinhardt, Adaptive Radar Detection and Estimation. New York, USA: Wiley-Interscience, 1992.
[82] S. Haykin, “The multitaper method for accurate spectrum sensing in cognitive radio environments,” in Proc. IEEE ACSSC ’07, Nov. 2007, pp. 436–439.
[83] T. S. Ferguson, A Course in Large Sample Theory. London, UK: Chapman and Hall, 1996.
[84] C. C. Gumas. (2000) Window-presum FFT achieves high-dynamic range, resolution.
[Online]. Available: http://archive.chipcenter.com/dsp/DSP000315F1.html
[85] Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum sensing for cognitive radios,” in Proc. IEEE CrownCom ’06, Mykonos Island, Greece, June 2006, pp. 1–5.
[86] IEEE P802.22/D2.08. Draft standard for wireless regional area networks part 22: Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands., IEEE Std. 802.22, May 2009.
[87] J. M. Lin, H. P. Ma, and D. Cabric, “A reliable adaptive multitaper spectral detector in wideband strong interference environments,” in Proc. IEEE GLOBECOM, accepted for publication, Dec. 2010.
[88] K. Linling, L. Jianhua, N. Zuyao, and Z. Junli, “Nonpilot-aided carrier frequency tracking for uplink OFDMA systems,” in Proc. IEEE Int. Conf. Communications (ICC), vol. 6, 2004, pp. 3193–3196.
[89] D. Huang and K. B. Letaief, “An interference-cancellation scheme for carrier frequency offsets correction in OFDMA systems,” IEEE Trans. Commun., vol. 53, pp. 1155–1165, July 2005.
[90] Z. Cao, U. Tureli, and Y. D. Yao, “Efficient structure-based carrier frequency offset estimation for interleaved OFDMA uplink,” in Proc. IEEE Int. Conf. Communications (ICC), vol. 5, 2003, pp. 3361–3365.
[91] ——, “Deterministic multiuser carrier-frequency offset estimation for interleaved OFDMA uplink,” IEEE Trans. Commun., vol. 52, pp. 1585–1594, Sept. 2004.
[92] M.-O. Pun, M. Morelli, and C.-C. J. Kuo, “Maximum-likelihood synchronization and channel estimation for OFDMA uplink transmissions,” IEEE Trans. Commun., vol. 54, no. 4, pp. 726–736, Apr. 2006.
[93] Z. Zhongshan and H. Kayama, “Robust uplink carrier frequency offset estimation with interference mitigation in OFDMA systems,” in Proc. IEEE WCNC, Apr. 2006, pp. 816–821.
[94] M.-O. Pun, S.-H. Tsai, and C.-C. J. Kuo, “An EM-based joint maximum likelihood estimation of carrier frequency offset and channel for uplink OFDMA systems,” in Proc. IEEE VTC, vol. 1, 2004, pp. 598–602.
[95] S. Barbarossa, M. Pompili, and G. B. Giannakis, “Channel-independent synchronization of orthogonal frequency-division multiple access systems,” IEEE J. Sel. Areas Commun., vol. 20, pp. 474–486, Feb. 2002.
[96] Y. Yingwei and G. B. Giannakis, “Blind carrier frequency offset estimation in SISO, MIMO, and multiuser OFDM systems,” IEEE Trans. Commun., vol. 53, no. 1, pp. 173–183, Jan. 2005.
[97] T. Yusek and H. Arslan, “ICI cancellation based channel estimation for OFDM systems,” in Proc. IEEE RAWCON’03, Aug. 2003, pp. 111–114.
[98] Standard for Local and Matropolitan Networks Part16: Air Interface for Fixed Broadband Wireless Systems, IEEE Std. 802.16, 2004.
[99] M. Speth, S. A. Fechtel, G. Fock, and H. Meyr, “Optimum receiver design for wireless broad-band systems using OFDM - Part I,” IEEE Trans. Commun., vol. 47, no. 11, pp. 1668–1677, Nov. 1999.
[100] V. Erceg, et al., “Channel models for fixed wireless applications,” IEEE 802.16.3 Task Group Contributions, June 2003.
[101] J. Terry and J. Heiskala, OFDM Wireless LANs: A Theoretical and Practical Guide. Indianapolis, IN, USA: Sams, 2002.
[102] S. S. Das, R. V. Rajakumar, M. I. Rahman, A. Pal, F. H. P. Fitzek, O. Olsen, and R. Prasad, “Low complexity residual phase tracking algorithm for OFDM-based WLAN systems,” in Proc. International CSNDSP Symposium, Newcastle, UK, July 2004, pp. 128–131.
[103] S. Y. Liu and J. W. Chong, “A study of joint tracking algorithms of carrier frequency offset and sampling clock offset for OFDM-based WLANs,” in Proc. Communications, Circuits and Systems and West Sino Expositions, IEEE 2002 International Conference on, vol. 1, June 2002, pp. 109–113.
[104] E. K. P. Chong and S. H. Zak, An Introduction to Optimization, 2nd Edition. New York: Wiley, 2001.
[105] J. M. Lin and H. P. Ma, “A baseband transceiver for IEEE 802.16e-2005 MIMO-OFDMA uplink communications,” in Proc. IEEE GLOBECOM, Nov. 2007, pp. 4291–4295.
[106] S. Salari, M. Ardebilipour, M. Ahmadian, V. Meghdadi, and J. P. Cances, “EMbased joint ML estimation of carrier frequency offset and channel coefficients in MIMO-OFDM systems,” in Proc. IEEE PIMRC’07, Sept. 2007, pp. 1–5.
[107] C. R. Sheu, M. C. Tseng, C. Y. Chen, and H. P. Lin, “A low-complexity concatenated ICI cancellation scheme for high-mobility OFDM systems,” in Proc. IEEE WCNC, Mar. 2007, pp. 1389–1393.
[108] M. X. Chang, “A novel algorithm of inter-subchannel interference self-cancellation for OFDM systems,” IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2881–2893, Aug. 2007.
[109] F. Yu, W. A. Krzymien, and C. Tellambura, “A technique for multiuser and intercarrier interference reduction in multiple-antenna multiuser OFDM downlink,” IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3493–3497, Oct. 2007.
[110] J. Y. Yun, S. Y. Chung, and Y. H. Lee, “Design of ICI canceling codes for OFDM systems based on capacity maximization,” IEEE Signal Process. Lett., vol. 14, no. 3, pp. 169–172, Mar. 2007.
[111] F. Yu, W. A. Krzymien, and C. Tellambura, “Transmitter precoding for ICI reduction in OFDM systems,” in Proc. IEEE VTC, vol. 3, May 2005, pp. 1788–1792.
[112] M.-E. Grandmaison and F. Gagnon, “Channel estimation algorithms for uplink OFDMA tiles,” in Proc. IEEE ISWPC’07, Feb. 2007, pp. 1788–1792.
[113] L. Yang, C. Ming, S. Cheng, and H. Wang, “Combined maximum likelihood and ordered successive interference cancellation grouped detection algorithm for multistream MIMO,” in Proc. IEEE ISSSTA2004, Sydney, Australia, Aug. 2004, pp. 250–254.
[114] C. J. Huang, C. W. Yu, and H. P. Ma, “A power efficient configurable low complexity MIMO detector,” IEEE Trans. Circuits Syst. I, vol. 56, no. 2, pp. 485–496, Feb. 2009.
[115] C. W. Yu and H. P. Ma, “A low complexity scalable MIMO detector,” in Proc. IWCMC 2006, Vancouver, Canada, July 2006, pp. 605–610.
[116] G. Schrack, W. Wu, and X. Liu, “A fast distance approximation algorithm for encoded quadtree locations,” in Canadian Conference, vol. 2, Sept. 1993, pp. 1135–1138.
[117] Technical ’Specification Group Radio Access Network: User Equipment (UE) radio transmission and reception (FDD) (Release 7), 3GPP TS 25.101 v7.0.0, June 2005.
[118] M. A. Cantin, Y. Savaria, and P. Lavoie, “A comparison of automatic word length optimization procedures,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 2, 2002, pp. II–612–II–615.
[119] H. Choi and W. P. Burleson, “Search-based wordlength optimization for VLSI/DSP synthesis,” in VLSI Signal Processing, VII, 1994., [Workshop on], 1994, pp. 198–207.
[120] F. Catthoor, J. Vandewalle, and H. D. Man, “Simulated annealing based optimization of coefficient and data word-lengths in digital filters,” in Int. J. Circuit Theory Applications, vol. 16, Sept. 1988, pp. 371–390.
[121] S. Wonyong and K. Ki-Il, “Simulation-based word-length optimization method for fixed-point digital signal processing systems,” IEEE Trans. Signal Process., vol. 43, no. 12, pp. 3087–3090, Dec. 1995.
[122] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A new VLSI-oriented FFT algorithm and implementation,” in Proc. of IEEE ASIC Conf., 1998, pp. 337–341.
[123] S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation,” in Proc. URSI Int. Symp. Signals, Systems, and Electronics, vol. 29, Oct. 1998, pp. 257–262.
[124] P. Y. Tsai and T. D. Chiueh, “A low-power multicarrier-CDMA downlink baseband receiver for future cellular communication systems,” IEEE Trans. Circuits Syst. I, vol. 54, no. 10, pp. 2229–2239, Oct. 2007.
[125] W. Eberle, V. Derudder, G. Vanwijnsberghe, M. Vergara, L. Deneire, L. V. D. Perre, M. G. E. Engels, I. Bolsens, and H. D. Man, “80-Mb/s QPSK and 72-Mb/s 64-QAM flexible and scalable digital OFDM transceiver ASICs for wireless local area networks in the 5-GHz band,” IEEE J. Solid-State Circuits, vol. 36, no. 11, pp. 1829–1838, Nov. 2001.
[126] G. Schrack, W. Wu, and X. Liu, “A fast distance approximation algorithm for encoded quadtree locations,” in Proc. Canadian Conference Electrical and Computer Engineering, vol. 2, Sept. 1993, pp. 1135–1138.
[127] L. M. Denq, Y. T. Hsing, and C. W. Wu, “Hybrid BIST scheme for multiple heterogeneous embedded memories,” IEEE Des. Test. Comput., vol. 26, no. 2, pp. 64–73, Mar. 2009.
[128] T. Y. Wu, P. Y. Chen, C. W. Wu, and D. M. Kwai, “Improving testing and diagnosis efficiency for regular memory arrays,” in Proc. Int. Symp. VLSI Design Automation and Test (VLSI-DAT), Apr. 2010, pp. 100–103.
[129] P. Y. Tsai, “Design and implementation of an MC-CDMA baseband transceiver for next-generation mobile communication systems,” Ph.D. dissertation, National Taiwan University, Taipei, Taiwan, June 2005.
[130] A. Troya, K. Maharatna, M. Krstic, E. Grass, U. Jagdhold, and R. Kraemer, “Low-power VLSI implementation of the inner receiver for OFDM-based WLAN systems,” IEEE Trans. Circuits Syst. I, vol. 5, no. 2, pp. 672–686, Mar. 2008.
[131] W. Eberle, V. Derudder, L. V. D. Perre, G. Vanwijnsberghe, M. Vergara, L. Deneire, B. Gyselinckx, M. G. E. Engels, I. Bolsens, and H. D. Man, “A digital 72Mb/s 64-QAM OFDM transciever for 5GHz wireless LAN in 0.18μm CMOS,” in Dig. Tech. Papers IEEE ISSCC 2001, Feb. 2001, pp. 336–337.
[132] Y. Jung, J. Kim, S. Lee, H. Yoon, and J. Kim, “Design and implementation of MIMO-OFDM baseband processor for high-speed wireless LANs,” IEEE Trans. Circuits Syst. II, vol. 54, no. 7, pp. 631–635, July 2007.
[133] C. C. Chang, C. H. Su, and J. M. Wu, “A low power baseband OFDM receiver IC forWiMAX communication,” in Proc. ASSCC Conf., Nov. 2007, pp. 292–295.
[134] H. Zou and B. Daneshrad, “32 mW self contained OFDM receiver ASIC for mobile cellular applications,” in Dig. Tech. Papers Symp. VLSI Circuits, June 2004, pp. 148–151.
[135] Y. J. Wu, “A baseband testbed for mobile MIMO WiMAX communications,” Master’s thesis, National Tsing Hua University, Hsinchu, Taiwan, 2009.