簡易檢索 / 詳目顯示

研究生: 林明杰
Lin Ming Chieh
論文名稱: 加權的山峰聚類演算法
A weighted mountain clustering algorithm
指導教授: 洪文良
Hung Wen Liang
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 18
中文關鍵詞: 山峰法色彩影像分割
外文關鍵詞: mountain method, color image segmentation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Yager和Filev( 1994 )介紹了山峰類聚法,並且由Yang和Wu( 2005 )所推廣。該方法是基於在特徵空間的密度估算,誰的山峰最高就當成該群的群心。這個過程一直重複到條件符合我們所需。本篇我們推廣一個有權重的聚類山峰法,在有干擾點的情況下能得到較好的效果。該方法也可以使用在起始群心的取得。根據Liu和Yang(1994)的彩色影像分割的結果證明,該方法比使用隨機取得群心的方法還要好。


    The Mountain Method of clustering was introduced by Yager and Filev (1994) and modified by Yang and Wu (2005). The approach is based on density estimation in feature space with the highest peak extracted as a cluster center and a new density estimation created for extraction of the next cluster center. The process is repeated until a stopping condition is met. In this paper, we develop a weighted mountain clustering algorithm that works well in noise variables. It can be useful for obtaining the initial estimate cluster centers for other more complex clustering algorithms. Results from color image segmentation illustrate the proposed methods produce better segmentation than the randomly generated initial cluster centers according to Liu and Yang’s (1994) evaluation function.

    1.Introduction-------------------------------------------1 2.Yang and Wu’s mountain clustering algorithm-----------2 3.Attribute weight method--------------------------------6 4.Color image segmentation-------------------------------7 5.References--------------------------------------------13

    [1] J.Z. Huang, M.K. Ng, H. Rong, and Z. Li, Automated variable weighting in k-means type clustering. IEEE Trans. Pattern Anal. Machine Intelligence 27, 657-668, 2005.
    [2] B.W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman & Hall, New York, 1986.
    [3] M.S. Yang and W.L. Wu, A modified mountain clustering algorithm, Pattern Anal. Applic. 8, 125-138, 2005.
    [4] R.R. Yager and D.P. Filev, Approximate clustering via the mountain method. IEEE Trans. Syst. Man Cybern 24, 1279-1284, 1994
    [5] J. Liu and Y.H. Yang, Multiresolution color image segmentation technique, IEEE Trans. on Pattern Analysis and Machine Intelligence 16, 689-700, 1994.
    [6] Chiu SL (1994) Fuzzy model identification based on cluster estimation. J Intel Fuzzy Syst 2:267–278
    [7] D.W. Kim, K.H. Lee, and D. Lee, A novel initialization for the fuzzy c-means algorithm for color clustering. Pattern Recognition Letters 25, 227-237, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE