研究生: |
蔡立偉 Tsai, Li-Wei |
---|---|
論文名稱: |
以化學氣相沉積法成長單層石墨烯及其應用於可撓式透明場效電晶體之研究 Synthesis of single layer graphene by chemical vapor deposition and investigation on graphene-based flexible transparent field-effect transistor |
指導教授: |
戴念華
Tai, Nyan-Hwa |
口試委員: |
林宏一
Lin, Hung-Yi 何詠碩 Ho, Yung-Shou |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 石墨烯 、電解拋光 、銅箔 、化學氣相沉積 、場效電晶體 、可撓曲 、透明 |
外文關鍵詞: | graphene, electropolish, Cu foil, chemical vapor deposition, Field-effect transistor, flexible, transparent |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單層石墨烯(single-layer graphene)為一種二維材料,具有高化學穩定性、高載子遷移率、獨特的光學性質且尺寸達奈米等級,對於未來取代以矽為主的電晶體有著無限的潛力,故以石墨烯為主的電晶體製程必須與目前半導體工業的製程其相容性要高。本研究先以化學氣相沉積系統在銅箔上成長大面積的單層石墨烯,再將石墨烯轉印至Polyethylene Terephthalate(PET)基板上製作可撓性透明場效電晶體。因為單層石墨烯是以薄膜的形式沿著銅箔的表面成長,因此銅的表面形貌會對單層石墨烯的成長品質、後續轉印及元件性質造成影響,為了提升電晶體核心中的石墨烯之品質,本研究利用電解拋光的技術製備高平坦化的銅箔以成長石墨烯,成功降低了石墨烯的缺陷,進而提升了電晶體的性能。藉由拉曼光譜儀、場發射電子顯微鏡、光學顯微鏡探討各參數對石墨烯製程的影響及轉印的結果,以原子力顯微鏡量測單層石墨烯在SiO2/Si基板上的厚度,並使用四點探針量測系統、紫外光-可見光光譜儀分析石墨烯在PET基板上的光電性質,最後再以多探針量測系統量測電晶體撓曲前後的性質。本研究成功的使用電解拋光技術提升了石墨烯電晶體元件的性質,其載子遷移率較未使用電解拋光技術所製作的元件高出2到3倍。
Single-layer graphene, a two-dimension carbon material which possesses high chemical stability, high carrier mobility, unique optical property, and a dimension with nano-scale level, is promising for the application in graphene-based devices. To partially replace the Si-based devices, it is requested that the fabrication process for the graphene-based device should be compatible with the technology used in present semiconductor industry. In this work, large-area single graphene was synthesized on Cu foil by low pressure chemical vapor deposition. The graphene films were transferred from Cu foil to polyethylene terephthalate(PET) using PMMA anisole solution for fabricating flexible transparent graphene-based field-effect transistors. The electropolish method was used to reduce the roughness of the Cu foil. Roughness of the Cu foil surface is an important factor that influences the morphology of graphene films on transferred substrate and affects electronic transport property of the graphene-based devices. The influences of the electropolish process on roughness of the transferred graphene were investigated by using Raman spectrum, scanning electron microscope, and optical microscope; and we found that the electropolish process improves the electronic transport property of the graphene-based devices. Carrier mobility of the graphene-based devices was increased 2-3 times when the electropolish process was adopted. Variations on the electronic transport property of the graphene-based devices before and after bending were tested and the results are discussed.
參考文獻
[1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode”, Physical Review, Vol. 74, pp. 230-231, 1948.
[2] A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, Vol. 6, pp. 183-191, 2007.
[3] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang and S. V. Dubonos, “Electric Field Effect in Atomically Thin Carbon Films”, Science, Vol. 306, pp. 666–669, 2004.
[4] C. Lee, X. D. Wei, J. W. Kysar and J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, Vol. 321, pp. 385-388, 2008.
[5] F. Bonaccorso, Z. Sun, T. Hasan and A. C. Ferrari, “Graphene
photonics and optoelectronics”, Nature Photonics, Vol. 4, pp. 611-622, 2010.
[6] R. Giorgi, N. Lisi, T. Dikonimos, M. Falconieri, S. Gagliardi, E. Salernitano, P. Morales and L. Pilloni, “Graphene: large area synthesis by Chemical Vapor Depostion”, Studi & ricerche, pp. 68-74, 2011.
[7] M. I. Katsnelson, “Graphene: carbon in two dimensions” Materials Today, Vol. 10, pp. 20-27, 2007.
[8] A. H. Castro Neto, F. Guinea, N. M. R. PeresK. S. Novoselov and A. K. Geim, “The electronic properties of graphene”, Reviews of Modern Physics, Vol. 81, pp. 109-162, 2009.
[9] P. R. Wallace, “The Band Theory of Graphite”, Physical. Review, Vol. 71, pp. 622-634, 1947.
[10] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhrer,
“Intrinsic and extrinsic performance limits of graphene devices on SiO2”, Nature Nanotechnology, Vol. 3, pp. 206-209, 2008.
[11] F. Schwierz, “Graphene transistors”, Nature Nanotechnology, Vol 5, pp. 487-496, 2010.
[12] X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors”, Science, Vol. 319, pp. 1229-1232, 2008.
[13] M. W. Lin, C. Ling, Y. Zhang, H. J. Yoon, M. M. C. Cheng, L. A Agapito, N. Kioussis, N. Widjaja and Z. Zhou, “Room-temperature high on/off ratio in suspended graphene nanoribbon field-effect transistors”, Nanotechnology, Vol. 22, 265201(7pp), 2011.
[14] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim, “Chaotic Dirac Billiard in Graphene Quantum Dots”, Science, Vol. 320, pp. 356-358, 2008.
[15] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai1, “N-Doping of Graphene Through Electrothermal Reactions with Ammonia”, Science, Vol. 324, pp. 768-771, 2009.
[16] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang and G. Yu, “Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties”, Nano Letters, Vol. 9, pp. 1752-1758, 2009.
[17] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo and L. M. K. Vandersypen, “Gate-induced insulating state in bilayer graphene devices”, Nature Materials, Vol. 7, pp. 151-157, 2007.
[18] S. Lee, K. Lee and Z. Zhong, “Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition”, Nano Letters, Vol. 10, pp. 4702-4707, 2010.
[19] B. J. Kim, H. Jang, S. K. Lee, B. H. Hong, J.-H. Ahn and J. H. Cho, “High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics”, Nano Letters, Vol. 10, pp. 3464-3466, 2010.
[20] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. d. Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene”, Science, Vol. 312, pp. 1191-1196, 2006.
[21] W. A. d. Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski and G. Martinez, “Epitaxial graphene”, Solid State Communications, Vol. 143, pp. 92-100, 2007.
[22] W. S. Hummers Jr.and R. E. Offeman, “Preparation of Graphitic Oxide”, Journal of the American Chemical Society, Vol. 80, pp. 1339, 1958.
[23] B. C. Brodie, “On the Atomic Weight of Graphite”, Philosophical Transactions of the Royal Society of London, Vol. 149, pp. 249-259, 1859.
[24] L. Staudenmaier, “Preparation of graphitic acid”, Berichte der Deutschen Chemischen Gesellschaft, Vol. 31, pp. 1481-1487, 1898.
[25] H.-J. Shin, K. K. Kim, A. Benayad, S.-M. Yoon, H. K. Park, I. S. Jung, M. H. Jin, H.-K. Jeong, J. M. Kim, J. Y. Choi and Y. H. Lee, “Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance”, Advanced Functional Materials, Vol. 19, pp. 1987-1992, 2009.
[26] H. C. Schniepp, J.-L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud'homme, R. Car, D. A. Saville and I. A. Aksay, “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide”, The Journal of Physical Chemistry B, Vol. 110, pp. 8535-8539, 2006.
[27] M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme and I. A. Aksay, “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite”,
Chemistry of Materials, Vol. 19, pp. 4396-4404, 2007.
[28] J. Wintterlin, M.-L. Bocquet, “Graphene on metalsurfaces”, Surface Science, Vol. 603, pp. 1841-1852, 2009.
[29] E. Loginova, N. C Bartelt, P. J Feibelman and K. F McCarty, “Evidence for graphene growth by C cluster attachment”, New Journal of Physics, Vol. 10, pp. 30-35, 2008.
[30] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition”, Nano Letters, Vol. 9, pp. 30-35, 2009.
[31] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen and S.-S. Pei1, “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters, Vol. 93, 113103(3pp), 2008.
[32] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, Vol. 324, pp.1312-1314, 2009.
[33] W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, “Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition”, Carbon, Vol. 49, pp. 4122-4130, 2011.
[34] P. Lenz-Solomun, M.-C. Wu and D. W. Goodman, “Methane coupling at low temperatures on Ru(0001) and Ru(11¯20) catalysts”, Catalysis Letters, Vol. 25, pp. 75-86, 1994.
[35] 劉書宏「銅電鍍與電解拋光於銅鑲嵌金屬連導線應用之研究」,國立交通大學材料科學與工程學研究所博士論文 中華民國九十五年七月
[36] S. C. Chang, J. M. Shieh, C. C. Huang, B. T. Dai, Y. H. Li and M. S. Feng, “Microleveling mechanisms and applications of electropolishing on planarization of copper metallization”,
Journal of vacuum science & technology B, Vol. 20, pp. 2149-2153, 2002.
[37] Z. Luo, Y. Lu, D. W. Singer, M. E. Berck, L. A. Somers, B. R. Goldsmith and A. T. C. Johnson, “Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure”, Chemistry of Materials, Vol. 23, pp. 1441-1447, 2011.
[38] J.C. Meyera, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, D. Obergfell, S. Roth, C. Girita and A. Zettl, “On the roughness of single- and bi-layer graphene membranes”, Solid State Communications, Vol. 143, pp. 101-109, 2007.
[39] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, “Two-dimensional atomic crystals”, Proceedings of the National Academy of Sciences of the United States of America, Vol. 102, pp. 10451-10453, 2005.
[40] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene”, Science, Vol. 320, pp. 5881, 2008.
[41] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, “Making graphene visible”, Applied Physics Letters, Vol. 91, 063124(3pp), 2007.
[42] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B, Vol. 61, pp. 14095-14107, 2000.
[43] M. S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus and R. Saito, “Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy”, Nano Letters, Vol. 10, pp. 751-758, 2010.
[44] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, “Raman spectroscopy in graphene”, Physics Reports, Vol. 473, pp. 51-87, 2009.
[45] A. C. Ferrari1, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers”, Physical Review Letters, Vol. 97, 187401(4pp), 2006.
[46] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phononcoupling, doping and nonadiabatic effects”, Solid State Communications, Vol. 143, pp. 47-57, 2007.
[47] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold and L. Wirtz, “Raman imaging of graphene”, Solid State Communications, Vol. 143, pp. 44-46, 2007.
[48] Y. Y. Wang, Z. H. Ni, T. Yu, Z. X. Shen, H. M. Wang, Y. H. Wu,
W. Chen and A. T. S. Wee, “Raman Studies of Monolayer Graphene: The Substrate Effect”, The Journal of Physical Chemistry C, Vol. 112, pp. 10637-10640, 2008.