研究生: |
陳世昌 Chen, Shih-Chang |
---|---|
論文名稱: |
二維圓形投射體於靜止流體中飛行之研究 Free Flight of a Two-Dimensional Circular Projectile in a Quiescent Fluid |
指導教授: |
李雄略
Lee, Shong-Leih |
口試委員: |
陳志臣
陳寒濤 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 計算流體力學 、拋體運動 、阻力 |
外文關鍵詞: | CFD, Projectile motion, Drag |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文進行二維圓形投射體於靜止流場中拋射飛行之研究,計算圓柱投射體於流體中飛行所帶動之流場,並從流場直接算出作用於投射體之壓力與摩擦力,用這些阻力搭配牛頓第二運動定律,算出投射體於靜止流場中飛行時之真正軌跡,並且探討發射初速度、發射時之旋轉、以及投射體與流體之密度差對飛行軌跡之影響。本文將會使用隱式虛擬邊界法搭配非交錯性直角座標網格系統來進行流體力學計算,並且使用補綴網格來減少計算量。
We do the research of the free flight of a two dimensional circular projectile in a quiescent fluid. Calculate the pressure drag and form drag of the projectile, and use the drag with Newton’s second law to find the real projection trajectory of projectile in quiescent fluid. We also investigate how the initial speed, the initial rotation speed, and the density of projectile influences the projection trajectory. We use the implicit virtual boundary method with non-staggered Cartesian grid system and patch grid to calculate and reduce the calculating time.
Z.G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems, J. Comput. Phys. 195 (2004) 602–628.
K. Namkoong, J.Y. Yoo, H. G. Choi, Numerical analysis of two-dimensional motion of a freely falling circular cylinder in an infinite fluid, J. Fluid Mech. 604 (2008) 33–53.
R.K. Reddy, J.B. Joshi, K. Nandakumar, P.D. Minev, Direct numerical simulations of a freely falling sphere using fictitious domain method: Breaking of axisymmetric wake, J. Chem. Eng. Science 65 (2010) 2159–2171.
U. La ̅cis, K. Taira, S. Bagheri, A stable fluid–structure-interaction solver for low-density rigid bodies using the immersed boundary projection method, J. Comput. Phys. 305 (2016) 300–318
G. W. Parker, Projectile motion with air resistance quadratic in the speed, Am. J. Phys. 45, 606 (1977)
H. Erlichson, Maximum projectile range with drag and lift, with particular application to golf, Am. J. Phys. 51, 357 (1983)
R. D. H. Warburton, J. Wang, Analysis of asymptotic projectile motion with air resistance using the Lambert W function, Am. J. Phys. 72, 1404 (2004)
K. Yabushita, M. Yamashita, K. Tsuboi, An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method, J. Phys. A: Math. Theor. 40 (2007) 8403–8416.
P.S. Chudinov, Approximate Analytical Investigation of Projectile Motion in a Medium with Quadratic Drag Force, Int. J. Sports Science Eng. 05 (2011) 027-042.
C.H. Belgacem, Range and flight time of quadratic resisted projectile motion using the Lambert W function, Eur. J. Phys. 35 (2014) 055025 (7pp)
V. V. Chistyakov, K. S. Malykh, A Precise Parametric Equation for the Trajectory of a Point Projectile in the Air with Quadratic Drag and Longitudinal or Side Wind. (2015)
M. Turkyilmazoglu, Highly accurate analytic formulae for projectile motion subjected to quadratic drag, Eur. J. Phys. 37 (2016) 035001 (12pp)
R. Kantrowitz, M.M. Neumann, Optimization of Projectile Motion Under Air Resistance Quadratic in Speed, Mediterr. J. Math. (2017)
C.Hadj Belgacem, Analysis of projectile motion with quadratic air resistance from anonzero height using the Lambert W function, J. Taibah University for Science 11 (2017) 328–331.
S. L. Lee , G. S. Cyue, K. W. Chen, Implicit Virtual Boundary Method for Moving Boundary Problems on Non-Staggered Cartesian Patch Grids, J. Mech. (2017)
S. L. Lee, R. Y. Tzong, Aritifical pressure for pressure-linked equation, International J. Heat. Mass Transfer. 35 (1992) 2705-2716.
S. L. Lee, Weighting function scheme and its application on multidimensional conservation equations, Int. J. Heat and Mass Transfer, 32 (1989) 2065-2073.