研究生: |
陳 穎 Chen, Ying |
---|---|
論文名稱: |
RIS輔助毫米波無線通訊系統之用於通道估測的主動元件選擇方法 Selection of Active Elements for Channel Estimation in RIS-Aided mmWave Wireless Communication Systems |
指導教授: |
王晉良
Wang, Chin-Liang |
口試委員: |
鐘嘉德
Chung, Char-Dir 古聖如 Ku, Sheng-Ju 黃昱智 Huang, Yu-Chih |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 32 |
中文關鍵詞: | 可重構智慧反射面 、混合主動與被動元件 、通道估測 、毫米波 、壓縮感知 、強化學習 |
外文關鍵詞: | Reconfigurable Intelligent Surface (RIS), Hybrid Active and Passive Elements, Channel Estimation, mmWave, Compressed Sensing, Reinforcement Learning (RL) |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來已有一些研究針對採用混合主動元件(active elements;AEs)與被動元件(passive elements; PEs)配置之可重構智慧反射面(reconfigurable intelligent surface;RIS)架構的毫米波無線通訊系統,探討通道估測問題;在這些研究中,AEs通常是隨機分佈在RIS上,而此種安排通常會導致令人不滿意的通道估測效能。為了處理這個問題,本論文提出一種新的AEs選擇方法,以強化通道估測效能;此方法透過全球導航衛星系統獲得用戶設備(user equipment;UE)的即時位置,並據以設計RIS中的AEs佈局。我們將RIS劃分為多個子區域,再根據UE的位置從每個子區域中策略性地選擇適當個數的AEs;我們還提出一種貪婪座標下降(greedy coordinate descent)演算法,以降低AEs選擇的運算複雜度;為了迅速調整AEs的位置以因應連續移動的UE,我們進一步將強化學習技術應用於AEs選擇;最後,我們利用所選擇之AEs和壓縮感知技術進行UE與RIS之間的通道估測。電腦模擬結果顯示,相較於隨機AEs選擇機制,所提出的AEs選擇方法可明顯改善通道估測效能;此一優越效能特點使得採用混合式AEs與PEs配置之RIS架構極有潛力應用於實際無線通訊系統。
Recently, some investigations have been made on channel estimation for millimeter wave wireless communication systems using the reconfigurable intelligent surface (RIS) architecture with a hybrid configuration of active elements (AEs) and passive elements (PEs). In these works, AEs were typically randomly distributed on the RIS, and this arrangement often caused unsatisfactory channel estimation performance. To deal with this issue, this thesis proposes a novel scheme for selection of AEs to enhance the channel estimation performance, where the layout of AEs is well designed according to the real-time location of user equipment (UE) obtained from the Global Navigation Satellite System. The RIS is partitioned into multiple subregions and an appropriate number of AEs are selected strategically from each subregion according to the UE location. A greedy coordinate descent algorithm is also proposed to reduce the computational complexity of the selection process. To adjust the positions of AEs quickly for a continuously moving UE, reinforcement learning is further used for the selection of AEs. With the selected AEs, channel estimation is finally performed between the UE and RIS based on compressed sensing. It is demonstrated by computer simulation results that the proposed AEs selection scheme induces a significant performance improvement in channel estimation over the random AEs selection approach. The excellent-performance feature makes the RIS architecture with a hybrid configuration of AEs and PEs highly promising for use in practical wireless communications.
[1] N. T. Nguyen, V.-D. Nguyen, Q. Wu, A. Tölli, S. Chatzinotas, and M. Juntti, “Hybrid active-passive reconfigurable intelligent surface-assisted multi-user MISO systems,” in Proc. IEEE 23rd Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Oulu, Finland, Jul. 2022, pp. 1–5.
[2] N. T. Nguyen, V.-D. Nguyen, Q. Wu, A. Tölli, S. Chatzinotas, and M. Juntti, “Hybrid active-passive reconfigurable intelligent surface-assisted UAV communications,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Rio de Janeiro, Brazil, Dec. 2022, pp. 3126–3131.
[3] R. S. P. Sankar and S. P. Chepuri, “Beamforming in hybrid RIS assisted integrated sensing and communication systems,” in Proc. 30th Eur. Signal Process. Conf. (EUSIPCO), Belgrade, Serbia, Aug. 29–Sep. 2, 2022, pp. 1082–1086.
[4] Z. Zhang, L. Dai, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, “Active RIS vs. passive RIS: Which will prevail in 6G?,” IEEE Trans. Commun., vol. 71, no. 3, pp. 1707–1725, Mar. 2023.
[5] F. Zheng, H. Liu, and L. Chi, “A semi-passive RIS channel estimation method based on super-resolution network,” in Proc. IEEE 8th Int. Conf. Comput. Commun. (ICCC), Chengdu, China, Dec. 2022, pp. 17–21.
[6] G. C. Alexandropoulos and E. Vlachos, “A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Barcelona, Spain, May 2020, pp. 9175–9179.
[7] S. Yang, W. Lyu, D. Wang, and Z. Zhang, “Separate channel estimation with hybrid RIS-aided multi-user communications,” IEEE Trans. Veh. Technol., vol. 72, no. 1, pp. 1318–1324, Jan. 2023.
[8] X. Li, H. Gou, H. Lyu, Z. Shen, M. Sun, and X. Li, “Improving low-cost GNSS positioning through hybrid-frequency PPP ambiguity resolution with classified augmented regional corrections,” IEEE Sens. J., vol. 23, no, 20, pp. 24673–24685, Oct. 2023.
[9] S. Liu, Z. Gao, J. Zhang, M. Di Renzo, and M.-S. Alouini, “Deep denoising neural network assisted compressive channel estimation for mmWave intelligent reflecting surfaces,” IEEE Trans. Veh. Technol., vol. 69, no. 8, pp. 9223–9228, Aug. 2020.
[10] W. Ma, C. Qi, Z. Zhang, and J. Cheng, “Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO,” IEEE Trans. Commun., vol. 68, no. 5, pp. 2838–2849, May 2020.
[11] A. Taha, M. Alrabeiah, and A. Alkhateeb, “Deep learning for large intelligent surfaces in millimeter wave and massive MIMO systems,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, Dec. 2019, pp. 1–6.
[12] K. Chen, C. Qi, and G. Y. Li, “Two-step codeword design for millimeter wave massive MIMO systems with quantized phase shifters,” IEEE Trans. Signal Process., vol. 68, no. 1, pp. 170–180, Jan. 2020.
[13] M. R. Akdeniz, Y. Liu, M. K. Samimi, S. Sun, S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter wave channel modeling and cellular capacity evaluation,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1164–1179, Jun. 2014.
[14] A. Liao, Z. Gao, H. Wang, S. Chen, M. Alouini, and H. Yin, “Closed-loop sparse channel estimation for wideband millimeter-wave full-dimensional MIMO systems,” IEEE Trans. Commun., vol. 67, no. 12, pp. 8329–8345, Dec. 2019.
[15] Z. Gao, L. Dai, S. Han, C.-L. I, Z. Wang, and L. Hanzo, “Compressive sensing techniques for next-generation wireless communications,” IEEE Wireless Commun., vol. 25, no. 4, pp. 144–153, Jun. 2018.
[16] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007.
[17] C. Wu and Y. Xu, “Greedy coordinate descent method on non-negative quadratic programming,” in Proc. IEEE 11th Sens. Array Multichannel Signal Process. Workshop (SAM), Hangzhou, China, Jun. 2020, pp. 1–5.
[18] A. Tigga, L. Hota, S. Patel, and A. Kumar, “A deep Q-learning-based adaptive traffic light control system for urban safety,” in Proc. 4th Int. Conf. Adv. Comput., Commun. Control Netw. (ICAC3N), Greater Noida, India, Dec. 2022, pp. 2430–2435.