簡易檢索 / 詳目顯示

研究生: 洪若芬
Ruo-Fen Hung
論文名稱: 壓電致動器模型建構與逆模型控制
Modeling and Inverse Model Control of Piezoelectric Actuator
指導教授: 葉廷仁
Ting-Jen Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 61
中文關鍵詞: 壓電建模逆模型磁滯潛變
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓電致動器由於其固有的非線性磁滯和潛變特性,大大降低其定位精準度,若能建立包含磁滯與潛變特性之模型,將之應用於控制系統中則可提升其定位精準度。本論文將利用基本的物理元件,如彈簧、阻尼和庫倫摩擦力等,來建構可完整描述壓電致動器磁滯效應與潛變效應之模型,並設計程序化的參數鑑別步驟以鑑別模型元件參數。而模型中包含了非線性彈簧和動態阻尼,分別模擬磁滯迴圈的非反對稱性,和磁滯迴圈隨輸入頻率改變的特性。此外模型也能有效的解釋殘餘留應力和電荷對壓電致動器造成的影響。利用上述模型可推導出壓電致動器逆模型作為定位控制之用。經由實驗證實透過開迴路逆模型控制的補償,與將壓電致動器視為單一線性彈簧進行開迴路控制結果比較,弦波軌跡之定位誤差由13.77%降低至1.19%以下,步階軌跡之穩態誤差由6.41%降低至0.79%以下,階梯狀軌跡之定位誤差由7.19%降低至0.75%以下。


    摘要 II 致謝詞 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 本文大綱 2 第二章 壓電致動器簡介 4 2.1 壓電效應 4 2.2 壓電致動器 6 2.3 壓電致動器於系統應用 7 第三章 壓電致動器特性模型 11 3.1 壓電致動器機電轉換模型 11 3.2 傳統麥斯威爾磁滯模型 12 3.3 伯格潛變模型 15 第四章 壓電致動器模型建構與分析 20 4.1 壓電致動器模型建構 20 4.2 模型特性分析 23 4.2.1 低頻弦波輸入下模型特性 23 4.2.2 步階電壓輸入下模型特性 26 4.2.3 不同頻率輸入下模型特性 27 4.3 初始狀態對壓電致動器影響 29 4.3.1 初始條件對磁滯迴圈的影響 29 4.3.2 初始條件對步階響應的影響 31 4.4 壓電致動器逆模型控制 33 4.4.1 逆模型控制 33 4.4.2 逆模型推導 34 第五章 模型驗證與逆模型控制結果 37 5.1 實驗架構 37 5.2 參數鑑別結果與討論 39 5.3 壓電致動器行為模擬 49 5.4 開迴路逆模型控制結果 52 第六章 結論與未來研究方向 57 6.1 結論 57 6.2 未來研究方向 58 參考文獻 60

    [1] H. Adriaens, W. L. de Koning, and R. Banning, “Modeling Piezoelectric Actuators,” IEEE/ASME Transactions on Mechatronics, Vol. 5, Dec. 2000, pp 331-341

    [2] P. Krejci and K. Kuhnen,’’Inverse control of systems with hysteresis and creep”, IEE Proc.-Control Theory Appl. Vol. 148 No.3 May 2001

    [3] D. Croft, G.Shed and S.Devasia, ”Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application”, ASME Journal of Dynamic Systems, Measurement, and Control ,vol. 123, 2001, pp35-43

    [4] Hewon Jung, Jong Youp Shim, and DaeGab Gweon,”New open-loop actuating method of piezoelectric actuators for removing hysteresis and creep”, Review of Scientific Instruments, vol. 71, No. 9, September 2000, pp3436-3440

    [5] Ru Changhai, Sun Lining,”Hysteresis and creep compensation for piezoelectric actuator in open-loop operation”, Sensors and Actuators A, vol. 122, 2005, pp124-130

    [6] M.Goldfarb and N.Celanovic, “Modeling Piezoelectric Stack Actuators for Control of Micromanipulation,” IEEE Contr. Syst. Mag., vol.17, 1997, pp69-79

    [7] Demetri Terzopoulos, and Kurt Fleischer, “Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture”, Computer Graphics, Vol. 22, No. 4, August 1988, pp269-278

    [8] PI manual, “Micro Positioning, Nano Positioning, Nano Automation Solutions for Cutting-Edge Technologies.”

    [9] Osamah M. EI Rifai, and Kamal Youcef-Toumi, “Creep in Piezoelectric Scanners of Atomic Force Microscopes”, American Control Conference Anchorage, AK May 8-10, 2002

    [10] 吳亭穎,「麥斯威爾辭至模型建別之改善策略」,國立清華大學動力機械工程學系碩士論文,2003

    [11] 呂世文,「壓電致動器磁滯與潛變之模型建構與參數鑑別」,國立清華大學動力機械工程學系碩士論文,2005

    [12] H.M. Paynter, Analysis and design of engineering systems, MIT Press, Cambridge, MA.

    [13] T.-J. Yeh, Shin-Wen Lu and Ting-Ying Wu, ”Modeling and Identification of Hysteresis in Piezoelectric Actuators”, ASME Journal of Dynamic Systems, Measurement, and Control, vol. 128, Issue 2, 2006, pp.189-196

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE