簡易檢索 / 詳目顯示

研究生: 陳俊任
Chen, Chun-Jen
論文名稱: 利用鎳鋁合金為鋁誘發結晶矽薄膜太陽電池之下電極研究
Development of NiAl Bottom Electrode for Aluminum Induced Crystallization Based Solar Cells
指導教授: 陳福榮
Chen, Fu-Rong
蔡春鴻
Tsai, Chuen-Horng
口試委員: 陳福榮
蔡春鴻
林澤勝
孫文檠
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 76
中文關鍵詞: 太陽電池下電極鋁誘發結晶矽
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來矽薄膜太陽電池逐漸受到重視是由於矽單晶太陽電池消耗許多矽材料。目前最成熟的矽薄膜太陽電池結構是非晶矽(a-Si:H)及微晶系(μc-Si:H)所堆疊的串疊型電池(tandem cells)。多晶矽薄膜給予了另一個探索方向。鋁誘發結晶Aluminum induced crystallization (AIC)是另一種可期待的多晶矽薄膜製程技術,其熱處理溫度相對較低(~400℃)且時間也可接受。
    IMEC發展的AIC薄膜太陽電池可以達到8%。而更高的效率難以達到其中一個原因在於矽薄膜晶粒中缺陷(intragrain defect),此缺陷是AIC本身的特質。所以除了消除晶粒中缺陷,從結構改良來提高電池效率也是一方法。我們研究將下電極從點電極型式改良成全面下電極,如此除了可以降低金屬電極與矽的接觸電阻也可提高單一電池的吸光面積進而提高電池效率。全面下電極利用的材料之一鎳鋁合金( NiAl )有低電阻率 (~1E-5Ωcm) 及可承受後續磊晶製程的高溫(1638℃) 。此外,鎳鋁合金並不與矽反應形成矽化鎳乃由於逆反應是較易發生的。
    本論文利用射頻濺鍍將AIC與Ni/Al多層膜堆疊並同時熱處理進行反應,達到將晶種層多晶矽薄膜與下電極NiAl堆疊的目的,其中多晶矽薄膜約100nm,NiAl約500nm。利用X光繞射(XRD,X-ray diffraction)分析其鎳鋁合金的相,以及穿透式電子顯微鏡(TEM, transmission electron microscope)分析薄膜之顯微結構。利用轉換長度模型(TLM, transfer length model)量測多晶矽與鎳鋁合金之接觸電阻,並利用電流-電壓特性曲線(I-V characteristics)確認其為歐姆接觸。
    多晶矽薄膜晶粒尺寸約700nm,具體接觸電阻率可達到小於1mΩ∙cm^2。


    Thin film Si solar cells on inexpensive foreign substrates have attracted much attention in recent years because bulk Si based solar cells consume a lot of Si wafers which is the main contribution of high cost in the technology. The most mature Si thin film solar cells are the structures based on amorphous Si (a-Si:H) and microcrystalline Si (μc-Si:H). Aluminum induced crystallization (AIC) is one of another promising technology for fabricating pc-Si since its heat treatment temperature is comparably low (~400℃) and duration is fair.
    Solar cells based on AIC technology have reached the highest efficiency of 8% demonstrated by IMEC. Higher efficiency is difficult to reach due to the presence of intragrain defects which is an intrinsic defect of AIC. Altering cell structures may be one of the solutions to reach higher efficiency. In this thesis, we study the fabrication of high temperature back contact on full back area of cells rather than point contact to increase efficiency by lowering contact resistance between semiconductor and electrode. Our approach also increases area for incident light per unit cell. Nickel aluminide( NiAl ) is one of the candidates because of its low resistivity (~1E-5Ωcm) and high melting point (1638℃) which can sustain high temperature of epitaxy process for Si thickening. On the other hand, nickel aluminide do not react with pc-Si to form nickel silicide since Ni-Al bonding is more preffered than Ni-Si bonding.
    In this thesis, AIC and Ni/Al multilayer structures was deposited by RF-sputtering process then is annealed to proceed chemical reaction in order to form seed layer, pc-Si film and bottom electrode, NiAl, which has 100nm and 500nm in thickness, respectively. XRD was using for phase indenfication for NiAl. Microstructure of the films were explored by TEM. TLM (transfer length model) was applied to measure contact resistance, and junction characters were checked by I-V characteristics.
    The grain size of pc-Si film can achieve about 700nm, and the specific contact resistivity can be lower than 1mΩ∙cm^2.

    致謝..........................................................................................................................................................i 摘要 iii Abstract iv 目錄 vi 表目錄 viii 圖目錄 ix 第一章 研究背景及動機 1 1-1 緒論 1 1-1-1 矽太陽電池概述 1 1-1-2 鋁誘發結晶(AIC, aluminum induced crystallization) 2 1-1-3 下電極(bottom electrode)改良元件效率 3 1-1-4 選擇鎳鋁合金(NiAl)做為下電極之原因及其特性介紹 4 1-2 研究動機 5 第二章 金屬誘發矽結晶膜及鎳鋁下電極之製程 7 2-1 金屬誘發結晶簡述 7 2-2 鋁誘發結晶(aluminum induced crystallization)反應機制 8 2-3 AIC研究成果探討 12 2-3-1 Al / a-Si 厚度比 12 2-3-2 退火溫度影響 13 2-3-3 鋁薄膜晶粒尺寸之影響 15 2-3-4 Al / a-Si介面氧化層的影響 15 2-4 以多層膜結構進行固相反應形成鎳鋁合金的反應機制 16 2-5 Ni/Al多層膜退火後相變化探討 20 2-5-1 Ni/Al原子比例(atomic ratio)之影響 20 2-5-2 Ni/Al週期(period, Λ)的影響 21 2-6 論文研究及探討範疇 24 第三章 實驗過程及儀器介紹 26 3-1 實驗步驟 26 3-2 分析儀器 27 3-2-1 X光繞射( X-ray diffraction, XRD) 27 3-2-2 背向散射電子繞射(electron backscatter diffraction, EBSD) 27 3-2-3 穿透式電子顯微鏡 (transmission electron microscope, TEM) 29 3-2-4 電流–電壓特性量測 (I-V characteristics) 29 3-2-5 接觸電阻量測 (contact resistance measurement) 29 3-3 實驗參數簡述 31 第四章 實驗結果與討論 32 4-1 在玻璃基板上進行AIC 32 4-1-1 Al / a-Si 32 4-1-2 1%Si-Al/a-Si, 0M 34 4-1-3 1%Si-Al / a-Si, 2M 35 4-2 Ni/Al多層膜合成鎳鋁合金 38 4-2-1 Λ=35nm 38 4-2-2 Λ=70nm 39 4-2-3 Λ=140nm 42 4-3 以Ni/Al多層膜與Al/a-Si結合進行反應 47 4-3-1 a-Si / 1%Si-Al + Ni/Al, 0M 49 4-3-2 a-Si / 1%Si-Al + Ni/Al, 2M 51 4-3-3 a-Si /Al + Ni/Al, 0M 56 4-3-4 a-Si /Al + Ni/Al*, 0M 63 4-4 電性量測 69 第五章 結論 73 參考文獻 74

    [1] I. Gordon, et al., "8% efficient thin-film polycrystalline-silicon solar cells based on aluminum-induced crystallization and thermal CVD," Progress in Photovoltaics, vol. 15, pp. 575-586, Nov 2007.
    [2] C. F. Cheng, et al., "Modeling of grain growth mechanism by nickel silicide reactive grain boundary effect in metal-induced-lateral-crystallization," Ieee Transactions on Electron Devices, vol. 50, pp. 1467-1474, Jun 2003.
    [3] M. Wong, et al., "Characterization of the MIC/MILC interface and its effects on the performance of MILC thin-film transistors," Ieee Transactions on Electron Devices, vol. 47, pp. 1061-1067, May 2000.
    [4] D. Murley, et al., "An investigation of laser annealed and metal-induced crystallized polycrystalline silicon thin-film transistors," Ieee Transactions on Electron Devices, vol. 48, pp. 1145-1151, Jun 2001.
    [5] Z. H. Jin, et al., "The effects of extended heat treatment on Ni induced lateral crystallization of amorphous silicon thin films," Ieee Transactions on Electron Devices, vol. 46, pp. 78-82, Jan 1999.
    [6] J. Jang, et al., "Electric-field-enhanced crystallization of amorphous silicon," Nature, vol. 395, pp. 481-483, Oct 1998.
    [7] O. Nast, "The aluminium-induced layer exchange forming polycrystalline silicon on glass for thin-film solar cells," PhD, UNSW, 2000.
    [8] O. Nast and S. R. Wenham, "Elucidation of the layer exchange mechanism in the formation of polycrystalline silicon by aluminum-induced crystallization," Journal of Applied Physics, vol. 88, pp. 124-132, Jul 2000.
    [9] U. Koster, "CRYSTALLIZATION OF AMORPHOUS SILICON FILMS," Physica Status Solidi a-Applied Research, vol. 48, pp. 313-321, 1978.
    [10] A. Hiraki, "A MODEL ON THE MECHANISM OF ROOM-TEMPERATURE INTERFACIAL INTERMIXING REACTION IN VARIOUS METAL-SEMICONDUCTOR COUPLES - WHAT TRIGGERS THE REACTION," Journal of the Electrochemical Society, vol. 127, pp. 2662-2665, 1980.
    [11] T. B. Massalski, Ed., Binary Alloy Phase Diagrams. Ohio: ASM International, Materials park, 1990, p.^pp. Pages.
    [12] S. Gall, et al., "Aluminum-induced crystallization of amorphous silicon," Journal of Non-Crystalline Solids, vol. 299, pp. 741-745, Apr 2002.
    [13] O. Nast, et al., "Polycrystalline silicon thin films on glass by aluminum-induced crystallization," Ieee Transactions on Electron Devices, vol. 46, pp. 2062-2068,
    Oct 1999.
    [14] O. Nast and A. J. Hartmann, "Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon," Journal of Applied Physics, vol. 88, pp. 716-724, Jul 2000.
    [15] H. X. Zhu and R. Abbaschian, "Reactive processing of nickel-aluminide intermetallic compounds," Journal of Materials Science, vol. 38, pp. 3861-3870, Sep 2003.
    [16] M. Watanabe, et al., "Measurements of interdiffusion coefficients in Ni-Al system," Defect and Diffusion Forum, vol. 143, pp. 345-350, 1997.
    [17] P. Zhu, et al., "Reaction mechanism of combustion synthesis of NiAl," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 329, pp. 57-68, Jun 2002.
    [18] E. Ma, et al., "NIAL3 FORMATION IN AL/NI THIN-FILM BILAYERS WITH AND WITHOUT CONTAMINATION," Journal of Applied Physics, vol. 65, pp. 2703-2710, Apr 1989.
    [19] E. Ma, et al., "SELF-PROPAGATING EXPLOSIVE REACTIONS IN AL/NI MULTILAYER THIN-FILMS," Applied Physics Letters, vol. 57, pp. 1262-1264, Sep 1990.
    [20] E. Ma, et al., "NUCLEATION AND GROWTH DURING REACTIONS IN MULTILAYER AL/NI FILMS - THE EARLY STAGE OF AL3 NI FORMATION," Journal of Applied Physics, vol. 69, pp. 2211-2218, Feb 1991.
    [21] A. S. Edelstein, et al., "INTERMETALLIC PHASE-FORMATION DURING ANNEALING OF AL/NI MULTILAYERS," Journal of Applied Physics, vol. 76, pp. 7850-7859, Dec 1994.
    [22] A. S. Edelstein, et al., "REACTION-KINETICS AND BIASING IN AL/NI MULTILAYERS," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 195, pp. 13-19, Jun 1995.
    [23] C. Michaelsen, et al., "The early stages of solid-state reactions in Ni/Al multilayer films," Journal of Applied Physics, vol. 80, pp. 6689-6698, Dec 1996.
    [24] C. Michaelsen, et al., "Investigating the thermodynamics and kinetics of thin film reactions by differential scanning calorimetry," Journal of Physics D-Applied Physics, vol. 30, pp. 3167-3186, Dec 1997.
    [25] R. Pretorius, et al., "PREDICTION OF PHASE FORMATION SEQUENCE AND PHASE-STABILITY IN BINARY METAL-ALUMINUM THIN-FILM SYSTEMS USING THE EFFECTIVE HEAT OF FORMATION RULE," Journal of Applied Physics, vol. 70, pp. 3636-3646, Oct 1991.
    [26] H. Okamoto, Journal of Phase Equilibria and Diffusion, vol. 25, 2004.
    [27] E. G. Colgan, et al., "INITIAL PHASE FORMATION AND DISSOCIATION IN THE THIN-FILM NI/AL SYSTEM," Journal of Applied Physics, vol. 58, pp. 4125-4129,1985.
    [28] R. Pretorius, et al., "THIN-FILM COMPOUND PHASE-FORMATION SEQUENCE - AN EFFECTIVE HEAT OF FORMATION MODEL," Materials Science & Engineering R-Reports, vol. 10, pp. 1-83, Jul 1993.
    [29] J. Noro, et al., "Intermetallic phase formation in nanometric Ni/Al multilayer thin films," Intermetallics, vol. 16, pp. 1061-1065, Sep 2008.
    [30] A. S. Ramos, et al., "Production of intermetallic compounds from Ti/Al and Ni/Al multilayer thin films-A comparative study," Journal of Alloys and Compounds, vol. 484, pp. 335-340, Sep 2009.
    [31] P. J. Desre and A. R. Yavari, "SUPPRESSION OF CRYSTAL NUCLEATION IN AMORPHOUS LAYERS WITH SHARP CONCENTRATION GRADIENTS," Physical Review Letters, vol. 64, pp. 1533-1536, Mar 1990.
    [32] T. M. Christensen. (2000). Physics of Thin Films.
    [33] A. J. Schwartz, Ed., Electron Backscatter Diffraction in Materials Science. New York: (Springer Science+Business Media, 2000, p.^pp. Pages.
    [34] D. K. SCHRODER, Ed., SEMICONDUCTOR MATERIAL AND DEVICE CHARACTERIZATION. New Jersey: John Wiley & Sons, Inc., Hoboken, 2006, p.^pp. Pages.
    [35] Yamaguch.Y, et al., "ELECTRICAL RESISTIVITY OF NIAL COAL NIGA AND COGA," Journal of Applied Physics, vol. 39, pp. 231-&, 1968.
    [36] K. G. Efthimiadis, et al., "ON THE ANOMALOUS ELECTRICAL-RESISTIVITY IN SOME NI3 FECAL1-C ALLOYS," Solid State Communications, vol. 70, pp. 903-906, Jun 1989.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE