研究生: |
陳孟歆 Chen, Meng-Hsin |
---|---|
論文名稱: |
PEO/黏土奈米複合材料之晶體取向性研究 Crystal Orientation of Poly(ethylene oxide) in Poly(ethylene oxide)/Clay Nanocomposites |
指導教授: |
陳信龍
Chen, Hsin-Lung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 99 |
中文關鍵詞: | PEO/黏土奈米複合材料 、PEO晶體取向性 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Polymer/clay nanocomposites have attracted much attention due to their unique mechanical, electrical, optical, and thermal properties. In this study, we have prepared highly oriented PEO/clay nanocomposite films in which the clay platelets stacked perpendicular to film surface. The composite films with different contents of clay were prepared by solvent casting with different solvent removal rates. The orientation of PEO crystal with respect to the clay platelets was then investigated by synchrotron wide angle x-ray scattering (WAXS). From the 2-D WAXS patterns, homeotropic orientation of PEO crystals was observed in the composites prepared by slow solvent evaporation irrespective of clay content and crystallization temperatures. In the films prepared by fast solvent removal, the PEO crystals were found to display homogeneous orientation preferentially. Subsequent shearing treatment of the composite films may shift the homogeneous orientation to homeotropic state.
1. D. W. Schaefer, Macromolecules 2007,40, 8501-8516
2. P. Dubois, Mater. Sci. Eng. 2000, 28, 1-63
3. J. M. Yeh, J. Appl. Polym. Sci. 2004, 94, 1936–1946
4. W. J. Work, Pure. Appl. Chem. 2004, 76, 1985-2007
5. Y. Kojima, J. Appl. Polym. Sci. 1993, 49, 1259-1264
6. T. L. Wang, J. Appl. Polym. Sci. 2007, 104, 4135–4143
7. M. Okamoto, Polymer 2000, 41, 3887-38901
8. L. M. Stadtmueller, Polymer 2005, 46, 9574–9584
9. M. R. Karim, J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 2279–2285
10. L. Liu, J. Appl. Polym. Sci. 1999, 71, 1133-1138
11. G. P. Simon, Macromolecules 2005, 38, 1744-1751
12. G. Groeninckx, Polymer 2005, 46, 11359-11365
13. M. E. Galvin, Macromolecules 2006, 39, 1864-1871
14. H. J. Choi, Chem. Mater. 2002, 14, 1989-1994
15. G. Floudas, Chem. Mater. 2004, 16, 1686-1692
16. L. Zhu, Langmuir 2005, 21, 5672-5676
17. N. Ogata, J. Appl. Polym. Sci. 1997, 66, 573-581
18. G. Schmidt, Polymer 2006, 47, 7339–7348
19. G. Schmidt, Macromol. Rapid Commun. 2005, 26, 143–149
20. E. T. Samulski, Polymer 2006, 47, 663-671
21. M. Okamoto, Polymer 2001, 42, 9633-9640
22. M. Okamoto, Macromolecules 2002, 35, 2042-2049
23. Y. Q. Rao, Macromolecules 2008, 41, 935-941
24. S. Z. D. Cheng, J. Am. Chem. Soc. 2000, 122, 5957-5967
25. S. Z. D. Cheng, Polymer 2001, 42, 5829-5839
26. S. Z. D. Cheng, Macromolecules 2004, 37, 3689-3698
27. S. Z. D. Cheng, Macromolecules 2001, 34, 1244-1251
28. E. Manias, Chem. Mater. 2003, 15, 844-849
29. G. Schmidt, Macromolecules 2002, 35, 4725-4732
30. M. M. Malwitz, J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 3237–3248
31. G. Schmidt, Phys. Chem. Chem. Phys. 2004, 6, 2977-2982
32. L. Zhu, Polymer 2004, 45, 8181-8193
33. P. Debye, J. Appl. Phys. 1949, 20, 518-525
34. P. Debye, H. R. Anderson Jr., H. Brumberger, J. Appl. Phys. 1957, 28, 679-683
35. W. J. Ruland, J. Appl. Cryst. 1971, 4, 444-451
36. P. Jannasch, Polymer 2005, 46, 7334–7345
37. H. W. chen, J. Polym. Sci., Part B: Polym. Phys. 2002, 40, 1342-1353
38. R.A. Vaia, Polymer 2001, 42, 1621-1631
39. T. M. Wu, Polym. Eng. Sci. 2002, 42, 1141-1150
40. P. Maiti, Polym. Eng. Sci. 2002, 42, 1864-1871
41. D. R. Paul, Polymer 2003, 44, 3945-3961
42. G. Groeninckx, Polymer 2006, 47, 1630-1639
43. M. M. Malwitz, J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 3237-3248
44. C. Harrats, Macromol. Rapid Commun. 2008, 29, 14–26