研究生: |
吳仁淵 Wu, Jen-Yuan |
---|---|
論文名稱: |
探討Li3PO4水性離子導體之添加增進單質硫鋰電池高速率充放電性能之研究 Investigation of Electrochemical Performance of Lithium-Sulfur Cell with High C-Rate Capability by Addition of Water-Soluble Li3PO4 Ionic Conductor |
指導教授: | 蔡哲正 |
口試委員: |
林居南
顏光甫 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 鋰硫電池 、高速率充放電 、離子導體 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於鋰硫電池在充放電過程的硫分子斷鍵與生成的可反應鋰離子量不受到晶體結構的受限,因此具備1673 mAh/g的理論電容量,遠高於嵌入結構型鋰離子電池的5倍之多,為次世代在高載能儲能系統中的開發重點材料之ㄧ。本研究中以LiNO3作為共鋰鹽類探討液態型鋰硫電池的反應機制,研究發現其電解液添加量與充放電中的截停電位(cut-off voltage)分別影響了初期放電容量與後期循環壽命表現,當中以E/S比值在20 ml/g並以1.7-2.8 V電位區間充放電為本研究中的最佳化參數。另外,本研究首次以簡單製程方法將水性Li3PO4離子導體導入系統中,從循環伏安法中可發現,當含量達到導電添加劑的25 %量時可得到最佳的氧化還原的可逆性。以交流阻抗與X-ray結晶性分析中發現在充放電後的硫分子具有相對較低的電荷傳導阻抗及結晶性,另外從SEM分析中顯示,由於25 % Li3PO4的添加量其在材料表面基底(Matrix)上能均勻散布500-700 nm顆粒,不僅能降低鋰離子與活性物質界面間的電荷轉移阻抗,還能作為硫分子在氧化還原中形成多硫化物後再析出的附著載體,使得在高變速率循環壽命上有最佳的表現。
Rechargeable lithium sulfur cell has become the next-generation energy storage system owing to its theoretical capacity of 1673 mAh/g is 5 times higher than current state of layer-like lithium ion cell based on intercalation mechanism. The discharge/charge of electrode is formed with cleavage/formation, therefore its quantity of reactive lithium ions are not constrained by the structural stability.The present work attempts to study the characteristics of liquid-based lithium sulfur cell with lithium co-salt of LiNO3. At the first part, the study examines how the cut-off voltage region and addition of electrolyte volume (E/S ratio) affect the earlier stage of discharge capacity and middle/later stage of cycle retention. At the second part, water soluble Li3PO4 of ionic conductor is introduced to the lithium sulfur system. The study compares the electrochemical performance by using cycle voltammetry method, AC impedance method, X-ray diffraction and SEM analysis. The results suggest that the addition of 16.7 to 25 % Li3PO4 of conductive agent shows the uniform distribution on the electrode after charge/discharge, therefore they have better rate capability and cycle performance. Such a simple method for the construction of electrode scaffolds shows potential for high C-rate performance lithium sulfur batteries.
參考文獻
1. Schlachter, F., No Moore's Law for batteries. Proc Natl Acad Sci U S A, 2013. 110(14): p. 5273.
2. Armand, M. and J.-M. Tarascon, Building better batteries. Nature, 2008. 451: p. 652-657.
3. Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414: p. 359-367.
4. Peter Dore Rawllnson, P.D.R., VEHICLE BATTERY PACK BALLISTIC in United States Patent Office. 2012: United State.
5. Bruce, P.G., et al., Li-O2 and Li-S batteries with high energy storage. Nat Mater, 2012. 11(1): p. 19-29.
6. http://www.oxisenergy.com/technology/.
7. Song, M.K., E.J. Cairns, and Y. Zhang, Lithium/sulfur batteries with high specific energy: old challenges and new opportunities. Nanoscale, 2013. 5(6): p. 2186-204.
8. Meyer, B., Elemental sulfur. Chemical Review, 1976. 76: p. 367-386.
9. Steudel, R., Aqueous Sulfur Sols. Top Curr Chem, 2003. 230: p. 153-166.
10. Zhang, S.S., Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. Journal of Power Sources, 2013. 231: p. 153-162.
11. Whittingham, M.S., PREPARATION OF STOICHIOMETRIC TITANIUM DISULFIDE, in United States Patent Office. 1975: United State.
12. Lewis H. Gaines, A., BATTERY HAVING AN ELECTRODE COMPRISING MIXTURES OF Al AND TiS2, in United States Patent Office. 1977: United State.
13. Rudolph R. Haering, J.A.R.S., Klaus Brandt, LITHIUM MOLYBDENUM DISULPHIDE BATTERY CATHODE, in United States Patent Office. 1979: United State.
14. http://upload.wikimedia.org/wikipedia/commons/5/54/LiTiS2 Intercalation Cartoon.png.
15. Steven J. Visco, L.C.D., Ionic Conductivity of Organosulfur Melts for Advanced
Storage Electrodes. Journal of The Electrochemical Society, 1988. 135(12): p. 2905-2909.
16. Katsuhiko Naoi, Y.O., Yoshiharu Iwamizu, and Noboru Oyama, Electrochemistry of Disulfide Compounds. Journal of The Electrochemical Society, 1995. 142(2): p. 354-360.
17. Canobre, S.C., et al., Performance of a polyaniline(DMcT)/carbon fiber composite as cathode for rechargeable lithium batteries. Journal of Power Sources, 2006. 154(1): p. 281-286.
18. Katsuhiko Naoi, K.-i.K., and Yoshinori Inoue, A New Energy Storage Material: Organosultur Compounds Based on Multiple Sulfur-Sulfur Bonds. Journal of The Electrochemical Society, 1997. 144(6): p. 170-172.
19. Nole, D.A., Sacramento, and V. Moss, BATTERY EMPLOYING LITHIUM-SULFUR ELECTRODES WITH NON-AQUEOUS ELECTROLYTE, in United States Patent Office. 1970: United State.
20. Jung, Y. and S. Kim, New approaches to improve cycle life characteristics of lithium–sulfur cells. Electrochemistry Communications, 2007. 9(2): p. 249-254.
21. Sun, J., et al., Application of gelatin as a binder for the sulfur cathode in lithium–sulfur batteries. Electrochimica Acta, 2008. 53(24): p. 7084-7088.
22. He, M., et al., Enhanced Cyclability for Sulfur Cathode Achieved by a Water-Soluble Binder. The Journal of Physical Chemistry C, 2011. 115(31): p. 15703-15709.
23. Zhang, Z., et al., Water-Soluble Polyacrylic Acid as a Binder for Sulfur Cathode in Lithium-Sulfur Battery. ECS Electrochemistry Letters, 2012. 1(2): p. A34-A37.
24. Jeon, B.H., et al., Preparation and electrochemical properties of lithium-sulfur polymer batteries. Journal of power sources, 2002. 109: p. 89-97.
25. http://bioage.typepad.com/.a/6a00d8341c4fbe53ef0133ed1a6bee970b-popup.
26. Gao, J., et al., Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies. The Journal of Physical Chemistry C, 2011. 115(50): p. 25132-25137.
27. Liang, C., N.J. Dudney, and J.Y. Howe, Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery. Chemistry of Materials, 2009. 21(19): p. 4724-4730.
28. Ji, X., K.T. Lee, and L.F. Nazar, A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater, 2009. 8(6): p. 500-6.
29. Wei Seh, Z., et al., Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat Commun, 2013. 4: p. 1331.
30. Chen, H., et al., Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries. Sci Rep, 2013. 3: p. 1910.
31. Su, Y.S. and A. Manthiram, A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem Commun (Camb), 2012. 48(70): p. 8817-9.
32. Aurbach, D., et al., On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries. Journal of The Electrochemical Society, 2009. 156(8): p. A694.
33. Xiong, S., et al., Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries. Electrochimica Acta, 2012. 83: p. 78-86.
34. Barchasz, C., et al., New insights into the limiting parameters of the Li/S rechargeable cell. Journal of Power Sources, 2012. 199: p. 322-330.
35. Zhang, S.S., Binder Based on Polyelectrolyte for High Capacity Density Lithium/Sulfur Battery. Journal of the Electrochemical Society, 2012. 159(8): p. A1226-A1229.
36. Song, M.-S., et al., Effects of Nanosized Adsorbing Material on Electrochemical Properties of Sulfur Cathodes for Li/S Secondary Batteries. Journal of The Electrochemical Society, 2004. 151(6): p. A791.
37. Zheng, W., X.G. Hu, and C.F. Zhang, Electrochemical Properties of Rechargeable Lithium Batteries with Sulfur-Containing Composite Cathode Materials. Electrochemical and Solid-State Letters, 2006. 9(7): p. A364.
38. Zhang, Y., et al., Novel V2O5/S composite cathode material for the advanced secondary lithium batteries. Solid State Ionics, 2010. 181(17-18): p. 835-838.
39. Dong, K., et al., Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries. Materials Research Bulletin, 2013. 48(6): p. 2079-2083.
40. Sun, F., et al., A high-rate lithium–sulfur battery assisted by nitrogen-enriched mesoporous carbons decorated with ultrafine La2O3 nanoparticles. Journal of Materials Chemistry A, 2013. 1(42): p. 13283.
41. Plieth, W., Electrochemistry for Materials Science. First edition ed. 2008: Elsevier. 410.
42. Lee, M.H., J.Y. Kim, and H.K. Song, A hollow sphere secondary structure of LiFePO4 nanoparticles. Chem Commun (Camb), 2010. 46(36): p. 6795-7.
43. Campbell, N.A., Biology, ed. 7th. 2005, San Francisco: Pearson.
44. Zhang, S.S., Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO3-Contained Electrolyte. Journal of the Electrochemical Society, 2012. 159(7): p. A920-A923.
45. Zhang, S., Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio. Energies, 2012. 5(12): p. 5190-5197.
46. Zheng, J., et al., How to Obtain Reproducible Results for Lithium Sulfur Batteries? Journal of the Electrochemical Society, 2013. 160(11): p. A2288-A2292.
47. Jayaprakash, N., et al., Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed Engl, 2011. 50(26): p. 5904-8.
48. Su, Y.S. and A. Manthiram, Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat Commun, 2012. 3: p. 1166.
49. Deng, Z., et al., Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading. Journal of the Electrochemical Society, 2013. 160(4): p. A553-A558.
50. Nelson, J., et al., In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. J Am Chem Soc, 2012. 134(14): p. 6337-43.