簡易檢索 / 詳目顯示

研究生: 徐雅玲
Ya-Ling Hsu
論文名稱: 單晶鐵矽化合物薄膜與砷化鎵異質結構的晶格結構及磁性分析
Structural and Magnetic Characteristics of Epitaxial Fe3Si/GaAs Heterostructures
指導教授: 郭瑞年
J. Raynien Kwo
洪銘輝
Minghwei Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 81
中文關鍵詞: 分子束磊晶鐵矽化合物X-光繞射X-光光電子能譜自旋電子學
外文關鍵詞: MBE, Fe3Si, XRD, XPS, Spintronics
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自旋電子學是利用載體(電子與電洞)自旋傳導的電子學,而載體傳導的自旋動力學與磁性光電元件的發展息息相關。半金屬材料的特性是在費米能階只存在某一自旋方向的電子態密度,只有帶此特定自旋方向的電子可以傳導,因此被認為在自旋電子學的應用上極具潛力。鐵磁性材料Fe3Si的居禮溫度(Curie Temperature)為840K,且具有特殊Heusler alloy結構,由於Heusler alloy被認為具有半金屬特性,Fe3Si/GaAa異質結構可能可以在自旋電子學的應用上提供較高的自旋注入效率。
    在這個論文裡,我們利用分子束磊晶系統成長出磊晶薄膜,Fe3Si薄膜磊晶過程由高能電子繞射(RHEED) 量測分析得到銳利的條狀圖案。利用高解析X-光繞射儀,我們得到Fe3Si薄膜布拉格繞射條紋的rocking curve半高波寬約為0.014°,也得到Fe3Si和GaAs之間的晶格係數差異約為-0.2%,因此,我們可以得到晶格係數幾乎相配的Fe3Si/GaAs系統。我們利用SQUID得到Fe3Si的磁滯曲線,發現曲線隨著成長溫度不同有些變化,為了改善可能產生的介面作用層,我們設計了一種新的成長方式。除此之外,我們也利用in-situ X-光光電子能譜儀發現經過in-situ高溫退火之後介面作用層成功的被減少。
    利用分子束磊晶系統,我們也成功的在GaAs (100)基板上長出磊晶薄膜MgO。利用X-光繞射量測,我們發現單晶MgO和GaAs是以4:3的晶格匹配。因此,我們可以利用磊晶的MgO薄膜作為穿隧能障,繼續研究Fe3Si/MgO/GaAs系統的穿隧自旋注入效率。


    Spin dependent transport of charges is critical to the functionality of many magneto-electronic devices. Since half metals have electrons of only one spin state present at the Fermi energy, they are ideal candidates to be used as spin injectors. Fe3Si is a ferromagnet with a Tc of 840K, and can be regarded as a Heusler alloy with a composition of Fe2FeSi. Fe3Si is recently considered as an excellent candidate for spin injection, since some of the Heusler alloys are predicted to be half metals with 100% spin polarization.
    In this work, the epitaxial film growth was carried out in a multi-chamber MBE system. Streaky RHEED patterns were observed during the MBE growth of Fe3Si on the atomically flat GaAs(100) surface. High-resolution x-ray diffraction measurements were made on our Fe3Si films and gave a narrow rocking curve of about 0.014°. The lattice mismatch between the film and GaAs was determined to be of about -0.2%. Hence, it was feasible to obtain a perfectly lattice matched epitaxial heterostructure for studying effective spin injection. The magnetic properties were measured at 10K and 300K by SQUID magnetometry. The B-H loops at low fields showed fine features that varied with film growth temperature. The appropriate growth procedure was then carried out to minimize the interface reactions. Otherwise, the in-situ XPS spectra showed that the interfacial Fe–Ga–As reactions were reduced by annealing at higher temperatures.
    MgO was also successfully grown on GaAs (100) substrate. It was obtained using x-ray diffraction measurement that the single crystal MgO was epitaxially grown on GaAs with a 4:3 lattice coincidence. Hence, it was possible for us to study Fe3Si based tunnel spin injector using an epitaxial MgO as a tunneling barrier.

    1. Introduction 1.1 Spintronics and spin transistor 1.2 Tunneling magnetoresistance and magnetic tunnel junction 1.3 Half-metallic ferromagnet 1.4 Crystal structure of Fe3Si 2. Instruments and Theory 2.1 UHV molecular beam epitaxy (MBE) multi-chamber system 2.2 Reflection high energy electron diffraction (RHEED) 2.3 X-ray photoelectron spectroscopy (XPS) 2.4 High-resolution X-ray diffraction measurement (XRD) 2.5 X-ray reflectivity (XRR) 3. Experimental Procedure 4. Results and Discussion 4.1 Deposition and chemical composition of FeSix 4.2 High quality epitaxial Fe3Si films by varying growth temperature 4.3 An appropriate growth procedure for Fe3Si films on GaAs 4.4 Deposition and structural characteristic of epitaxial MgO/GaAs 5. Conclusions 6. References

    [1]. Semiconductor Spintronics and Quantum Computing, edited by D. D. Awschalom, D. Loss, and N. Samarth, (Springer, NY, 2002)
    [2]. H. Ohno, “Making nonmagnetic semiconductors ferromagnetic”, Science 281, 951 (1998)
    [3]. I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and Applications”, Reviews of Modern Physics 76, 323 (2004)
    [4]. Supriyo Datta and Biswajit Das, “Electronic analog of the electro-optic modulator”, Applied Physics Letters 56, 665 (1990)
    [5]. Junsaku Nitta, Tatsushi Akazaki, Hideaki Takayanagi, and Takatomo Enoki, “Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure”, Physical Review Letters 78, 1335 (1997)
    [6]. D. Hägele, M. Gestreich, WW Rühle, N. Nestle, and K. Ebeil, “Spin transport in GaAs”, Applied Physics Letters 73, 1580 (1998)
    [7]. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip and B. J. van Wees, “Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor”, Physical Review B 62, 4790 (2000)
    [8]. E. I. Rashba, “Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem”, Physical Review B 62, R16267 (2000)
    [9]. David D. Awschalom, Michael E. Flatté and Nitin Samarth, “Spintronics”, Scientific American 286, 66 (2002)
    [10]. J. M. D. Coey, J. J. Versluijs and M. Venkatesan, “Half-metallic oxide point contacts”, Journal of Physics D: Applied Physics 35, 2457 (2002)
    [11]. R. A. de Groot, F.M. Mueller, P. G. van Engen and K. H. J. Buschow, “New Class of Materials: Half-Metallic Ferromagnets”, Physical Review Letters 50, 2024 (1983)
    [12]. M. Hong, H. S. Chen, J. Kwo, A. R. Kortan, J. P. Mannaerts, B. E. Weir, and L. C. Feldman, “MBE Growth and Properties of Fe3(Al, Si) on GaAs(100)”, Journal of Crystal Growth 111, 984 (1991)
    [13]. S. H. Liou, S. S. Malhotra, J. X. Shen, M. Hong, J. Kwo, H. S. Chen, and J. P. Mannaerts, “Magnetic Properties of Epitaxial Single Crystal Ultra-thin Fe3Si Films on GaAs (001)”, Journal of Applied Physics 73, 6766 (1993)
    [14]. D. Y. Noh, M. Hong, Y. Hwu, J. H. Je, and J. P. Mannaerts, “Strain relaxation in Fe3(Al,Si)/GaAs: An x-ray scattering study”, Applied Physics Letters 68 (11), 1528 (1996)
    [15]. J. Herfort, H. P. Schonherr, and K. H. Ploog, “Epitaxial growth of Fe3Si/GaAs(001) hybrid structures”, Applied Physics Letters 83, 3912 (2003)
    [16]. A. Ionescu, C. A. F. Vaz, T. Trypiniotis, C. M. Gürtler, H. García-Miquel, and J. A. C. Bland, “Structural, magnetic, electronic, and spin transport properties of epitaxial Fe3Si/GaAs(001)”, Physical Review B 71, 094401 (2005)
    [17]. Molecular Beam Epitaxy, edited by M. A. Herman and H. Sitter, (Springer-Verlag, 1989)
    [18]. Introduction to Solid State Physics, edited by Kittel, (Wiley, 1996)
    [19]. An Introduction to RHEED, edited by Scott Bonham, (1997)
    [20]. Photoelectron Spectroscopy, edited by Stefan Hufner, (Springer-Verlag, 1995)
    [21]. Introduction to electrodynamics, edited by David J. Griffiths, (Prentice Hall, 1981)
    [22]. High resolution X-ray diffractometry and topography, edited by D. Keith Bowen and Brian K. Tanner, (Taylor & Francis, 1998)
    [23]. Dynamical theory of x-ray diffraction, edited by Authier, Andre, (Oxford, 2001)
    [24]. L. G. Parratt, “Surface Studies of Solids by Total Reflection of X-Rays”, Physical Review 95, 359 (1954)
    [25]. M Hong, J Kwo, A R Kortan J P Mannaerts, and A M Sergent., “Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation”, Science 283, 1897, (1999)
    [26]. C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond and L. H. Gale, “Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis”, Surface and Interface Analysis 3, 211 (1981)
    [27]. P. F. Fewster and C. J. Curling, “Composition and lattice-mismatch measurement of thin semiconductor layers by x-ray diffraction”, Journal of Applied Physics 62, 4154 (1987)
    [28]. C. R. Wie, “Rocking curve peak shift in thin semiconductor layers”, Journal of Applied Physics 66, 985 (1989)
    [29]. R. B. Shalvoy, G. B. Fisher and P. J. Stiles, “Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission”, Physical Review B 15, 1680 (1977)
    [30]. Taylor J.A., “An XPS study of the oxidation of AlAs thin films grown by MBE”, Journal of Vacuum Science and Technology 20, 751 (1982)
    [31]. B. D. Schultz, H. H. Farrell, M. M. R. Evans, K. Lüdge, and C. J. Palmstrøm, “ErAs interlayers for limiting interfacial reactions in Fe/GaAs(100) heterostructures”, Journal of Vacuum Science and Technology B 20(4), 1600 (2002)
    [32]. A.T. Hanbicki, B.T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor”, Applied Physics Letters 80, 1240 (2002)
    [33]. J. R. Waldrop and R. W. Grant, “Schottky barrier height and interface chemistry of annealed metal contacts to alpha 6H–SiC: Crystal face. dependence”, Applied Physics Letters 62, 2685 (1993)
    [34]. W. H. Butler, X.-G. Zhang, T. C. Schulthess and J. M. MacLaren, “Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches”, Physical Review B 63, 054416 (2001)
    [35]. Stuart S. P. Parkin, C. Kaiser, A. Panchula, PM Rice, B. Hughes, M. Samant and S.-H. Yang, “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers”, Nature Materials 3, 862–867 (2004)
    [36]. Shinji Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, “Giant room-temperature magnetoresistance in single-crystal Fe/MgO /Fe magnetic tunnel junctions”, Nature Materials 3, 868–871 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE