研究生: |
徐雅玲 Ya-Ling Hsu |
---|---|
論文名稱: |
單晶鐵矽化合物薄膜與砷化鎵異質結構的晶格結構及磁性分析 Structural and Magnetic Characteristics of Epitaxial Fe3Si/GaAs Heterostructures |
指導教授: |
郭瑞年
J. Raynien Kwo 洪銘輝 Minghwei Hong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 分子束磊晶 、鐵矽化合物 、X-光繞射 、X-光光電子能譜 、自旋電子學 |
外文關鍵詞: | MBE, Fe3Si, XRD, XPS, Spintronics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自旋電子學是利用載體(電子與電洞)自旋傳導的電子學,而載體傳導的自旋動力學與磁性光電元件的發展息息相關。半金屬材料的特性是在費米能階只存在某一自旋方向的電子態密度,只有帶此特定自旋方向的電子可以傳導,因此被認為在自旋電子學的應用上極具潛力。鐵磁性材料Fe3Si的居禮溫度(Curie Temperature)為840K,且具有特殊Heusler alloy結構,由於Heusler alloy被認為具有半金屬特性,Fe3Si/GaAa異質結構可能可以在自旋電子學的應用上提供較高的自旋注入效率。
在這個論文裡,我們利用分子束磊晶系統成長出磊晶薄膜,Fe3Si薄膜磊晶過程由高能電子繞射(RHEED) 量測分析得到銳利的條狀圖案。利用高解析X-光繞射儀,我們得到Fe3Si薄膜布拉格繞射條紋的rocking curve半高波寬約為0.014°,也得到Fe3Si和GaAs之間的晶格係數差異約為-0.2%,因此,我們可以得到晶格係數幾乎相配的Fe3Si/GaAs系統。我們利用SQUID得到Fe3Si的磁滯曲線,發現曲線隨著成長溫度不同有些變化,為了改善可能產生的介面作用層,我們設計了一種新的成長方式。除此之外,我們也利用in-situ X-光光電子能譜儀發現經過in-situ高溫退火之後介面作用層成功的被減少。
利用分子束磊晶系統,我們也成功的在GaAs (100)基板上長出磊晶薄膜MgO。利用X-光繞射量測,我們發現單晶MgO和GaAs是以4:3的晶格匹配。因此,我們可以利用磊晶的MgO薄膜作為穿隧能障,繼續研究Fe3Si/MgO/GaAs系統的穿隧自旋注入效率。
Spin dependent transport of charges is critical to the functionality of many magneto-electronic devices. Since half metals have electrons of only one spin state present at the Fermi energy, they are ideal candidates to be used as spin injectors. Fe3Si is a ferromagnet with a Tc of 840K, and can be regarded as a Heusler alloy with a composition of Fe2FeSi. Fe3Si is recently considered as an excellent candidate for spin injection, since some of the Heusler alloys are predicted to be half metals with 100% spin polarization.
In this work, the epitaxial film growth was carried out in a multi-chamber MBE system. Streaky RHEED patterns were observed during the MBE growth of Fe3Si on the atomically flat GaAs(100) surface. High-resolution x-ray diffraction measurements were made on our Fe3Si films and gave a narrow rocking curve of about 0.014°. The lattice mismatch between the film and GaAs was determined to be of about -0.2%. Hence, it was feasible to obtain a perfectly lattice matched epitaxial heterostructure for studying effective spin injection. The magnetic properties were measured at 10K and 300K by SQUID magnetometry. The B-H loops at low fields showed fine features that varied with film growth temperature. The appropriate growth procedure was then carried out to minimize the interface reactions. Otherwise, the in-situ XPS spectra showed that the interfacial Fe–Ga–As reactions were reduced by annealing at higher temperatures.
MgO was also successfully grown on GaAs (100) substrate. It was obtained using x-ray diffraction measurement that the single crystal MgO was epitaxially grown on GaAs with a 4:3 lattice coincidence. Hence, it was possible for us to study Fe3Si based tunnel spin injector using an epitaxial MgO as a tunneling barrier.
[1]. Semiconductor Spintronics and Quantum Computing, edited by D. D. Awschalom, D. Loss, and N. Samarth, (Springer, NY, 2002)
[2]. H. Ohno, “Making nonmagnetic semiconductors ferromagnetic”, Science 281, 951 (1998)
[3]. I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and Applications”, Reviews of Modern Physics 76, 323 (2004)
[4]. Supriyo Datta and Biswajit Das, “Electronic analog of the electro-optic modulator”, Applied Physics Letters 56, 665 (1990)
[5]. Junsaku Nitta, Tatsushi Akazaki, Hideaki Takayanagi, and Takatomo Enoki, “Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure”, Physical Review Letters 78, 1335 (1997)
[6]. D. Hägele, M. Gestreich, WW Rühle, N. Nestle, and K. Ebeil, “Spin transport in GaAs”, Applied Physics Letters 73, 1580 (1998)
[7]. G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip and B. J. van Wees, “Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor”, Physical Review B 62, 4790 (2000)
[8]. E. I. Rashba, “Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem”, Physical Review B 62, R16267 (2000)
[9]. David D. Awschalom, Michael E. Flatté and Nitin Samarth, “Spintronics”, Scientific American 286, 66 (2002)
[10]. J. M. D. Coey, J. J. Versluijs and M. Venkatesan, “Half-metallic oxide point contacts”, Journal of Physics D: Applied Physics 35, 2457 (2002)
[11]. R. A. de Groot, F.M. Mueller, P. G. van Engen and K. H. J. Buschow, “New Class of Materials: Half-Metallic Ferromagnets”, Physical Review Letters 50, 2024 (1983)
[12]. M. Hong, H. S. Chen, J. Kwo, A. R. Kortan, J. P. Mannaerts, B. E. Weir, and L. C. Feldman, “MBE Growth and Properties of Fe3(Al, Si) on GaAs(100)”, Journal of Crystal Growth 111, 984 (1991)
[13]. S. H. Liou, S. S. Malhotra, J. X. Shen, M. Hong, J. Kwo, H. S. Chen, and J. P. Mannaerts, “Magnetic Properties of Epitaxial Single Crystal Ultra-thin Fe3Si Films on GaAs (001)”, Journal of Applied Physics 73, 6766 (1993)
[14]. D. Y. Noh, M. Hong, Y. Hwu, J. H. Je, and J. P. Mannaerts, “Strain relaxation in Fe3(Al,Si)/GaAs: An x-ray scattering study”, Applied Physics Letters 68 (11), 1528 (1996)
[15]. J. Herfort, H. P. Schonherr, and K. H. Ploog, “Epitaxial growth of Fe3Si/GaAs(001) hybrid structures”, Applied Physics Letters 83, 3912 (2003)
[16]. A. Ionescu, C. A. F. Vaz, T. Trypiniotis, C. M. Gürtler, H. García-Miquel, and J. A. C. Bland, “Structural, magnetic, electronic, and spin transport properties of epitaxial Fe3Si/GaAs(001)”, Physical Review B 71, 094401 (2005)
[17]. Molecular Beam Epitaxy, edited by M. A. Herman and H. Sitter, (Springer-Verlag, 1989)
[18]. Introduction to Solid State Physics, edited by Kittel, (Wiley, 1996)
[19]. An Introduction to RHEED, edited by Scott Bonham, (1997)
[20]. Photoelectron Spectroscopy, edited by Stefan Hufner, (Springer-Verlag, 1995)
[21]. Introduction to electrodynamics, edited by David J. Griffiths, (Prentice Hall, 1981)
[22]. High resolution X-ray diffractometry and topography, edited by D. Keith Bowen and Brian K. Tanner, (Taylor & Francis, 1998)
[23]. Dynamical theory of x-ray diffraction, edited by Authier, Andre, (Oxford, 2001)
[24]. L. G. Parratt, “Surface Studies of Solids by Total Reflection of X-Rays”, Physical Review 95, 359 (1954)
[25]. M Hong, J Kwo, A R Kortan J P Mannaerts, and A M Sergent., “Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation”, Science 283, 1897, (1999)
[26]. C. D. Wagner, L. E. Davis, M. V. Zeller, J. A. Taylor, R. H. Raymond and L. H. Gale, “Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis”, Surface and Interface Analysis 3, 211 (1981)
[27]. P. F. Fewster and C. J. Curling, “Composition and lattice-mismatch measurement of thin semiconductor layers by x-ray diffraction”, Journal of Applied Physics 62, 4154 (1987)
[28]. C. R. Wie, “Rocking curve peak shift in thin semiconductor layers”, Journal of Applied Physics 66, 985 (1989)
[29]. R. B. Shalvoy, G. B. Fisher and P. J. Stiles, “Bond ionicity and structural stability of some average-valence-five materials studied by x-ray photoemission”, Physical Review B 15, 1680 (1977)
[30]. Taylor J.A., “An XPS study of the oxidation of AlAs thin films grown by MBE”, Journal of Vacuum Science and Technology 20, 751 (1982)
[31]. B. D. Schultz, H. H. Farrell, M. M. R. Evans, K. Lüdge, and C. J. Palmstrøm, “ErAs interlayers for limiting interfacial reactions in Fe/GaAs(100) heterostructures”, Journal of Vacuum Science and Technology B 20(4), 1600 (2002)
[32]. A.T. Hanbicki, B.T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, “Efficient electrical spin injection from a magnetic metal/tunnel barrier contact into a semiconductor”, Applied Physics Letters 80, 1240 (2002)
[33]. J. R. Waldrop and R. W. Grant, “Schottky barrier height and interface chemistry of annealed metal contacts to alpha 6H–SiC: Crystal face. dependence”, Applied Physics Letters 62, 2685 (1993)
[34]. W. H. Butler, X.-G. Zhang, T. C. Schulthess and J. M. MacLaren, “Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches”, Physical Review B 63, 054416 (2001)
[35]. Stuart S. P. Parkin, C. Kaiser, A. Panchula, PM Rice, B. Hughes, M. Samant and S.-H. Yang, “Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers”, Nature Materials 3, 862–867 (2004)
[36]. Shinji Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, “Giant room-temperature magnetoresistance in single-crystal Fe/MgO /Fe magnetic tunnel junctions”, Nature Materials 3, 868–871 (2004)