簡易檢索 / 詳目顯示

研究生: 詹子民
Chan, Tzu-Min
論文名稱: 基因調控網路與 Sox32 和Sox17 之內胚層斑馬魚發育次基因調控網路
Gene Regulatory Networks and Subcircuits of Sox32 and Sox17 in Zebrafish Endoderm Development
指導教授: 喻秋華
Yuh, Chiou-Hwa
汪宏達
Wang, Horng-Dar
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 161
中文關鍵詞: 斑馬魚背腹側生成內中胚分化基因調控網路轉錄因子斑馬魚內胚層發育
外文關鍵詞: Zebrafish, Dorsal–ventral polarity, Mesendoderm specification, Gene regulatory network, Transcription regulation, Zebrafish endoderm development
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The process of development is a result of cascades made by gene regulated interaction,
    which operates mainly through the regulated expression of genes encoding transcription factors
    and signaling pathways. In this thesis, I first integrated preexist bioinformatics data, combining
    gene expression pattern from ZFIN website and the interrelationship between genes from
    previous literatures. We established a database, and then constructed the genomic regulatory
    networks in zebrafish embryogenesis by using BioTapestry. We focused on the endoderm
    formation and dorsoanterior–ventroposterior patterning. This is the first part of this thesis.
    In vertebrate development, the process of gastrulation leads to three germ layers: ectoderm,
    endoderm, and mesoderm. The endoderm originates from the most marginal blastomeres of
    blastula stage embryos in zebrafish (Danio rerio). The most important signaling molecule in the
    endoderm formation is Nodal. Upon binding to its receptors, Nodal leads to the activation of
    gata5, bon and og9x, which then activate sox32 to promote the expression of sox17 and activate
    the endoderm differentiation. In the second part of this thesis, we established the subcircuits of
    sox32 and sox17 using morpholinos against sox32 and sox17, measured certain gene expression
    profiles by real time RT-PCR and validation by in situ hybridization. We identified several
    interesting functional motifs that are important building blocks in zebrafish developmental gene
    regulatory networks (GRNs). At the early stage, Sox32 and sox17 provide an autoregulatory lock
    on the endodermal fate of cells. Early activation turns to late repression for Sox32 to sox32 itself,
    and for Otx2 to sox17. Late transcription factors repress early activators: e.g., Gata5 activates
    sox17 and then Sox17 represses gata5; Gbx1 activates sox32 and then Sox32 represses gbx1. We
    found Sox32 and Sox17 repress many early transcription factors such as foxh1, and sox17
    represses itself at a later stage. This interaction network extends from the two important
    endoderm transcription factors and provides in-depth understanding of the complex regulatory
    architecture in early embryonic development.
    In the third part of this thesis, we further analyzed cis-regulatory element and directly tested
    for the existence of functional modules. The sox17 gene is a key marker of endodermal cell in
    the zebrafish. According to the predictions of the GRNs, based on perturbation experiment and
    literature search, the sox17 gene is engaged with two other regulatory genes, sox32 and pou5f1,however the regulatory inputs of sox17 at the genomic sequence level are not known. I analyzed
    the regulatory modules and transcription factor binding sites on the sox17 gene, and discovered
    three evolutionary conserved region, A, B, and C, are positive regulatory modules with a
    synergistic effect among them. I revealed the functionality for Pou5f1-transcription factor
    binding site on the B module, and Sox32-transcription factor binding site on the C module, and
    those two transcription factors work synergistically to positively regulate sox17. Furthermore, an
    evolutionarily non-conserved R module exhibits a repressive effect on both the ventral and dorsal
    side of the ectoderm. My research provides new insight into the complexity of endoderm
    formation. This is the first elucidated node in the zebrafish endoderm GRN`s which has been
    proved directly by their structural and functional relationships. It may serve as a landmark for
    decipher the complete endoderm gene regulatory network.


    發育過程是轉錄因子(transcription factors) 及訊號傳遞路徑(signaling pathways) 相
    互作用的結果。在這份論文研究,首先我利用整合生物資訊的方法,結合ZFIN 基因表現
    的資訊以及過去研究所產生出來的基因與基因之間關係的資料,統整成資料庫並建構出胚
    胎發育調控網路,尤其是著重內胚層的發育及背腹的區別之基因調控網路,構成本論文的
    第一部分。
    在脊椎動物發育過程當中,經過原腸期(gastrulation) 分化出外胚層、內胚層和中胚
    層,而在斑馬魚胚胎囊胚(blastula) 階段內胚層源自於胚葉細胞(blastomeres) 最邊緣。內
    胚層形成中最重要的訊息分子是Nodal 訊號傳遞路徑,經由Nodal 與它的接受體(receptor)
    結合之後活化gata5、bon 和og9x,然後活化sox32 進而促成sox17 的表現和內胚層的分
    化(differentiation)。內胚層形成中最重要的轉錄因子為sox32 及sox17。因此為了清楚了解
    這两個基因如何影響內胚層基因表現,第二部分的論文以實驗方法建立sox32 和sox17 次
    調控網路(subcircuits)。我們使用嗎琳代低聚核甘酸(morpholinos oligonucleotides) 專一性
    的抑制sox32 和sox17 基因的轉譯,然後利用即時定量聚合酶鏈反應(real time RT-PCR)
    測量下游基因表現量的改變, 並利用原位雜交(in situ hybridization)的方法驗證,以建立
    sox32 和sox17 次調控網路(subcircuits)。其中我們發現許多在斑馬魚發育之基因調控網路
    中重要的功能性群組。在早期的階段,sox32 和sox17 提供一個自我調控的循環位於將來
    會分化成內胚層區域。Sox32 早期活化但是晚期卻抑制sox32 它自己,並且Otx2 早期活
    化sox17 而晚期被Sox17 所抑制。另外還有一些相同調控的轉錄因子,如Gata5 早期活化
    sox17 而晚期被Sox17 所抑制和Gbx1 早期活化sox32 而晚期被Sox32 所抑制。我們也發
    現在晚期Sox32 和Sox17 會抑制早期的轉錄因子諸如foxh1,而Sox17 會抑制它自己。
    Sox32 及Sox17 這兩個重要的轉錄因子所組成的次調控網路關係,讓我們對於胚胎發育過
    程中複雜調控機制有了更深入的瞭解。
    第三部分的論文進一步在斑馬魚的內胚層發育基因調控網路,直接證明關鍵的基因調
    控之結構和功能性上的關係。在斑馬魚sox17 基因是一個內胚層細胞之關鍵性的標誌,根據來自於擾動實驗(perturbation experiment) 和文獻搜尋的基因調控網路,顯示Sox32 和
    Pou5f1 這兩個重要的轉錄因子對於sox17 基因的調控扮演非常重要的角色,但在DNA 序
    列層次上,sox17 基因同側調控元素(cis-regulatory elements)並不是很清楚。我分析sox17 的
    調控模組(regulatory module)及基因調控子序列(transcription factor binding site),發現
    sox17 基因上含有三個演化保守區域A、B、C,在功能上是具有協同作用的正調控模組。
    並證明B 模組上含有Pou5f1 調控子序列,且C 模組上含有Sox32 調控子序列,而Pou5f1
    和Sox32 互相作用對於正調控sox17 基因具有增效作用。此外,sox17 基因上非演化保守
    區域R 模組具有抑制sox17 基因表現在腹側及背側外胚層的作用。我的研究對於內胚層形
    成的複雜度提供一個新的見解,這是第一個斑馬魚的內胚層發育基因調控網路中,被研究
    透徹的網點(node),對於完整的內胚層基因調控網路的譯解具有指標性意義。

    Contents Contents 1 List of tables and figures 3 Abstract (Chinese) 6 Abstract (English) 8 Chapter 1 Introduction 10 1.1 Background 10 1.2 Gene regulatory networks in zebrafish development 10 1.3 Specific transcription factors and genomic regulatory code on endoderm specification 12 1.4 Figures 16 Chapter 2 Developmental Gene Regulatory Networks of the Zebrafish Embryo 19 2.1 Summary 19 2.2 Introduction 20 2.3 Overview of the strategy to establish the GRN 20 2.4 Overview of the embryogenesis in zebrafish 24 2.5 Four signaling pathways and their components 26 2.6 The major developmental stages and territories 29 2.7 Network motifs of the zebrafish GRNs controlling anterior-posterior axis and mesendodermal formation 29 2.8 Dorsal-ventral patterning 35 2.9 Endoderm formation 37 2.10 Tables 41 2.11 Figures 45 Chapter 3 The Endoderm Gene Regulatory Networks: Subcircuits of sox32 and sox17 in Zebrafish Development 59 3.1 Abstract 59 3.2 Introduction 60 3.3 Material and methods 62 3.4 Result 64 3.5 Discussion 71 3.6 Tables 75 3.7 Figures 79 Chapter 4 Functional Analysis of the Evolutionarily Conserved Cis-Regulatory Elements on the sox17 Gene in Zebrafish 95 4.1 Abstract 95 4.2 Introduction 96 4.3 Material and methods 98 4.4 Result 103 4.5 Discussion 113 4.6 Tables 118 4.7 Figures 121 Chapter 5 Conclusions and future perspective 136 5.1 Conclusions 136 5.2 Making more complete developmental networks in zebrafish 137 5.3 Comparing the sox32 mutant and MASO knockdown 138 5.4 The structure of Sox32 and Pou5f1 on DNA localization 138 5.5 Migration defect of the endodermal prcuror cell 139 5.6 Figures 140 References 143 Appendix: supplementary data 156 List of tables and figures Chapter 1 Introduction Figure 1 GRN for endomesoderm specification in sea urchin embryos. 16 Figure 2 Early blastula (stages 7.5–9) in Xenopus mesendoderm formation. 17 Figure 3 Nodal signal in endoderm development in zebrafish. 18 Chapter 2 Developmental Gene Regulatory Networks of the Zebrafish Embryo Table 1. Interaction data for sox17 41 Table 2. Spatial and temporal expression data for sox17 extracted from ZFIN 43 Figure 1A. Lateral view of the embryo at late blastula/early gastrula stage, with dorsoanterior to the right, ventroposterior to the left, vegetal to the bottom and the animal pole at the top 45 Figure 1B. Lateral view of the embryo at late blastula/early gastrula stage, with the derivatives of the three germ layers labeled 46 Figure 2. The major developmental stages and territories in zebrafish embryos are shown as a chart with developmental time (in hours post–fertilization (hpf)) labeled on the left 47 Figure 3A. Six lock-on systems 48 Figure 3B. Dorsal-ventral bistable toggle switch systems 49 Figure 3C. Mesendoderm motifs 50 Figure 4A. Gene networks that determine the dorsal-ventral axis at the dorsoanterior side of cleavage stage embryos 51 Figure 4B. Gene networks that determine the D-V axis at the dorsoanterior side of early gastrula stage embryos 52 Figure 4C. Gene networks that determine the dorsal-ventral axis at the dorsoanterior side of the late gastrula stage embryo 53 Figure 4D. Gene networks that determine the dorsal-ventral axis at the ventroposterior side of the cleavage stage 54 Figure 4E. Gene networks that determine the dorsal-ventral axis at the ventroposterior side of the late gastrula stage embryos 55 Figure 5A. Early mesendoderm specification 56 Figure 5B. Zygotic mesoderm and endoderm transcription factors activated by Nodal 57 - 4 - Figure 5C. View of the gene regulatory interactions in the endoderm 58 Chapter 3 The Endoderm Gene Regulatory Networks: Subcircuits of sox32 and sox17 in Zebrafish Development Table 1. The sequences of the primers u used in real time RT-PCR 75 Table 2. The sequences of the primers used for in situ hybridization 76 Table 3. Sox32 downstream target genes 77 Table 4. Sox17 downstream target genes 78 Figure 1. Expression profiles of three members of HMG family transcription factor 79 Figure 2. Morphology of sox32 and sox17 MO injected embryos 80 Figure 3. Sox32 activates endoderm-specific transcription factors at 5 hpf, 8 hpf and 11 hpf, and activates pax2a and pou1 at 11 hpf 81 Figure 4. Sox32 represses bon, og9x, and sox32 at later stages; it seems feedback loop is to have a temporal peak of expression 83 Figure 5. Sox32 represses drl, gbx1, tbx16, gata6, and pou5f1 at a later stage in different territory 84 Figure 6. Sox17 activates two endoderm-specific transcription factors, og9x and sox32 at 8 hpf, represses sox17 itself and the endoderm-specific transcription factor foxa1 after the expression peak of sox17 86 Figure 7. Sox17 represses some ectoderm transcription factors, including six3a, six3b, etv5, etv6, trh3, and sox4b, and in different areas at 24 hpf 88 Figure 8. The transcription factors drl, foxh1, gata4, gata5, and gata6, expressed in mesoderm are repressed by Sox17 at 24 hpf 90 Figure 9. The genes verified as sox32 upstream input at different developmental stages 92 Figure 10. The upstream inputs of sox17 are verified by gene-specific MO perturbation screening during embryo development 93 Figure 11. The sox32 and sox17 subcircuit network is divided into different areas during processing of the developmental stages 94 Chapter 4 Functional Analysis of the Evolutionarily Conserved Cis-Regulatory Elements on the sox17 Gene in Zebrafish Table 1. Summary of the GFP expression percentage of the injected embryos 118 - 5 - Table 2. Summary of the GFP constructs at 50% epiboly 119 Table 3. Summary of the GFP expression of the constructs at four different stages 120 Figure 1. Sox17 Conserved genomic modules and GFP constructs in this study 121 Figure 2. GFP expression patterns of different cis-element constructs during late blastula stage 123 Figure 3. Embryos injected with sox17 constructs have different GFP expression patterns during the gastrula stage 124 Figure 4. Double fluorescent in-situ hybridization for egfp and endogenous genes 125 Figure 5. Quantitative analysis of sox17 cis-element regulatory regions with GFP constructs and identification of the input on C-Bp-GFP 126 Figure 6. The genomic sequences of the A, B, and C modules of zebrafish sox17 compared with Tetraodon (A module), human (B module), and fugu (C module), respectively 127 Figure 7. Identification of the Pou5f1 target site on the B module, and the Sox32 target site on the C module 128 Figure 8. Functional analysis of transcription factor-binding sites by using gene-specific MO perturbation with real time RT-PCR 130 Figure 9. Over expression pou5f1 or sox32 mRNA increased the expression level of module B and C 132 Figure 10. In-vivo binding analysis of Sox32 on the sox17 cis-element verified by chromatinimmunoprecipitation 133 Figure 11. Summary of the regulation of the zebrafish sox17 cis-element compared with Xenopus sox17 135 Chapter 5 Conclusion and future perspective Figure 1. Workflow overview of the wet-lab portion of a ChIP-on-chip experiment. 140 Figure 2. Schematic View of ChIP-PETAnalysis. 141 Figure 3. External abnormalities at the 38-h stage after injection of 226D7 MO. 142

    References
    Ahmad, S., Keskin, O., Sarai, A., and Nussinov, R. (2008). Protein-DNA interactions:
    structural, thermodynamic and clustering patterns of conserved residues in DNA-binding
    proteins. Nucleic Acids Res 36, 5922-5932.
    Alexander, J., and Stainier, D. Y. (1999). A molecular pathway leading to endoderm
    formation in zebrafish. Curr Biol 9, 1147-1157.
    Amsterdam, A., and Hopkins, N. (2006). Mutagenesis strategies in zebrafish for identifying
    genes involved in development and disease. Trends Genet 22, 473-478.
    Aoki, T. O., David, N. B., Minchiotti, G., Saint-Etienne, L., Dickmeis, T., Persico, G. M.,
    Strahle, U., Mourrain, P., and Rosa, F. M. (2002). Molecular integration of casanova in the
    Nodal signalling pathway controlling endoderm formation. Development 129, 275-286.
    Aparicio, O., Geisberg, J. V., and Struhl, K. (2004). Chromatin immunoprecipitation for
    determining the association of proteins with specific genomic sequences in vivo. Curr Protoc
    Cell Biol Chapter 17, Unit 17 17.
    Attisano, L., Silvestri, C., Izzi, L., and Labbe, E. (2001). The transcriptional role of Smads
    and FAST (FoxH1) in TGFbeta and activin signalling. Mol Cell Endocrinol 180, 3-11.
    Barrera, L. O., and Ren, B. (2006). The transcriptional regulatory code of eukaryotic
    cells--insights from genome-wide analysis of chromatin organization and transcription factor
    binding. Curr Opin Cell Biol 18, 291-298.
    Bauer, H., Lele, Z., Rauch, G. J., Geisler, R., and Hammerschmidt, M. (2001). The type I
    serine/threonine kinase receptor Alk8/Lost-a-fin is required for Bmp2b/7 signal transduction
    during dorsoventral patterning of the zebrafish embryo. Development 128, 849-858.
    Bauer, H., Meier, A., Hild, M., Stachel, S., Economides, A., Hazelett, D., Harland, R. M., and
    Hammerschmidt, M. (1998). Follistatin and noggin are excluded from the zebrafish organizer.
    Dev Biol 204, 488-507.
    Ben-Tabou de-Leon, S., and Davidson, E. H. (2007). Gene regulation: gene control network
    in development. Annu Rev Biophys Biomol Struct 36, 191.
    Bennett, J. T., Joubin, K., Cheng, S., Aanstad, P., Herwig, R., Clark, M., Lehrach, H., and
    Schier, A. F. (2007a). Nodal signaling activates differentiation genes during zebrafish
    gastrulation. Dev Biol 304, 525-540.
    Bennett, J. T., Stickney, H. L., Choi, W. Y., Ciruna, B., Talbot, W. S., and Schier, A. F.
    (2007b). Maternal nodal and zebrafish embryogenesis. Nature 450, E1-2; discussion E2-4.
    Bisgrove, B. W., Essner, J. J., and Yost, H. J. (1999). Regulation of midline development by
    antagonism of lefty and nodal signaling. Development 126, 3253-3262.
    Bjornson, C. R., Griffin, K. J., Farr, G. H., 3rd, Terashima, A., Himeda, C., Kikuchi, Y., and
    Kimelman, D. (2005). Eomesodermin is a localized maternal determinant required for
    endoderm induction in zebrafish. Dev Cell 9, 523-533.
    Blader, P., Rastegar, S., Fischer, N., and Strahle, U. (1997). Cleavage of the BMP-4
    antagonist chordin by zebrafish tolloid. Science 278, 1937-1940.
    Blanco, M. J., Barrallo-Gimeno, A., Acloque, H., Reyes, A. E., Tada, M., Allende, M. L.,
    Mayor, R., and Nieto, M. A. (2007). Snail1a and Snail1b cooperate in the anterior migration
    of the axial mesendoderm in the zebrafish embryo. Development 134, 4073-4081.
    Bonneau, R., Facciotti, M. T., Reiss, D. J., Schmid, A. K., Pan, M., Kaur, A., Thorsson, V.,
    Shannon, P., Johnson, M. H., Bare, J. C., et al. (2007). A predictive model for transcriptional
    control of physiology in a free living cell. Cell 131, 1354-1365.
    Branford, W. W., and Yost, H. J. (2002). Lefty-dependent inhibition of Nodal- and
    Wnt-responsive organizer gene expression is essential for normal gastrulation. Curr Biol 12,
    2136-2141.
    Brown, J. L., Snir, M., Noushmehr, H., Kirby, M., Hong, S. K., Elkahloun, A. G., and
    Feldman, B. (2008). Transcriptional profiling of endogenous germ layer precursor cells
    identifies dusp4 as an essential gene in zebrafish endoderm specification. Proc Natl Acad Sci
    U S A 105, 12337-12342.
    Cao, Y., Zhao, J., Sun, Z., Zhao, Z., Postlethwait, J., and Meng, A. (2004). fgf17b, a novel
    member of Fgf family, helps patterning zebrafish embryos. Dev Biol 271, 130-143.
    Cha, Y. I., Solnica-Krezel, L., and DuBois, R. N. (2006). Fishing for prostanoids: deciphering
    the developmental functions of cyclooxygenase-derived prostaglandins. Dev Biol 289,
    263-272.
    Chan, T. M., Chao, C. H., Wang, H. D., Yu, Y. J., and Yuh, C. H. (2008a). Functional analysis
    of the evolutionarily conserved Cis-regulatory elements on the Sox17 gene in zebrafish. Dev
    Biol.
    Chan, T. M., Longabaugh, W., Bolouri, H., Chen, H. L., Tseng, W. F., Chao, C. H., Jang, T. H.,
    Lin, Y. I., Hung, S. C., Wang, H. D., and Yuh, C. H. (2008b). Developmental gene regulatory
    networks in the zebrafish embryo. Biochim Biophys Acta.
    Chen, C., and Shen, M. M. (2004). Two modes by which Lefty proteins inhibit nodal
    signaling. Curr Biol 14, 618-624.
    Chen, Y., and Schier, A. F. (2002). Lefty proteins are long-range inhibitors of squint-mediated
    nodal signaling. Curr Biol 12, 2124-2128.
    Cheng, S. K., Olale, F., Brivanlou, A. H., and Schier, A. F. (2004). Lefty blocks a subset of
    TGFbeta signals by antagonizing EGF-CFC coreceptors. PLoS Biol 2, E30.
    Chung, K. C., Gomes, I., Wang, D., Lau, L. F., and Rosner, M. R. (1998). Raf and fibroblast
    growth factor phosphorylate Elk1 and activate the serum response element of the immediate
    early gene pip92 by mitogen-activated protein kinase-independent as well as -dependent
    signaling pathways. Mol Cell Biol 18, 2272-2281.
    Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell 127,
    469-480.
    Cohen, M. M., Jr. (2003). Molecular dimensions of gastrointestinal tumors: some thoughts for
    digestion. Am J Med Genet A 122, 303-314.
    Connors, S. A., Trout, J., Ekker, M., and Mullins, M. C. (1999). The role of tolloid/mini fin in
    dorsoventral pattern formation of the zebrafish embryo. Development 126, 3119-3130.
    Dal-Pra, S., Furthauer, M., Van-Celst, J., Thisse, B., and Thisse, C. (2006). Noggin1 and
    Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. Dev Biol 298,
    514-526.
    de Caestecker, M. P., Bottomley, M., Bhattacharyya, S., Payne, T. L., Roberts, A. B., and
    Yelick, P. C. (2002). The novel type I serine-threonine kinase receptor Alk8 binds TGF-beta
    in the presence of TGF-betaRII. Biochem Biophys Res Commun 293, 1556-1565.
    Deak, M., Clifton, A. D., Lucocq, L. M., and Alessi, D. R. (1998). Mitogen- and
    stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38,
    and may mediate activation of CREB. Embo J 17, 4426-4441.
    Dick, A., Hild, M., Bauer, H., Imai, Y., Maifeld, H., Schier, A. F., Talbot, W. S., Bouwmeester,
    T., and Hammerschmidt, M. (2000). Essential role of Bmp7 (snailhouse) and its prodomain in
    dorsoventral patterning of the zebrafish embryo. Development 127, 343-354.
    Dickmeis, T., Mourrain, P., Saint-Etienne, L., Fischer, N., Aanstad, P., Clark, M., Strahle, U.,
    and Rosa, F. (2001). A crucial component of the endoderm formation pathway, CASANOVA,
    is encoded by a novel sox-related gene. Genes Dev 15, 1487-1492.
    Dodd, A., Curtis, P. M., Williams, L. C., and Love, D. R. (2000). Zebrafish: bridging the gap
    between development and disease. Hum Mol Genet 9, 2443-2449.
    Dorsky, R. I., Sheldahl, L. C., and Moon, R. T. (2002). A transgenic
    Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout
    zebrafish development. Dev Biol 241, 229-237.
    Dosch, R., and Niehrs, C. (2000). Requirement for anti-dorsalizing morphogenetic protein in
    organizer patterning. Mech Dev 90, 195-203.
    Dougan, S. T., Warga, R. M., Kane, D. A., Schier, A. F., and Talbot, W. S. (2003). The role of
    the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm.
    Development 130, 1837-1851.
    Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B. Z., and Barkai, N. (2002). Robustness
    of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304-308.
    Elsalini, O. A., von Gartzen, J., Cramer, M., and Rohr, K. B. (2003). Zebrafish hhex, nk2.1a,
    and pax2.1 regulate thyroid growth and differentiation downstream of Nodal-dependent
    transcription factors. Dev Biol 263, 67-80.
    Erter, C. E., Solnica-Krezel, L., and Wright, C. V. (1998). Zebrafish nodal-related 2 encodes
    an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev
    Biol 204, 361-372.
    Fan, X., Hagos, E. G., Xu, B., Sias, C., Kawakami, K., Burdine, R. D., and Dougan, S. T.
    (2007). Nodal signals mediate interactions between the extra-embryonic and embryonic
    tissues in zebrafish. Dev Biol 310, 363-378.
    Fekany, K., Yamanaka, Y., Leung, T., Sirotkin, H. I., Topczewski, J., Gates, M. A., Hibi, M.,
    Renucci, A., Stemple, D., Radbill, A., et al. (1999). The zebrafish bozozok locus encodes
    Dharma, a homeodomain protein essential for induction of gastrula organizer and
    dorsoanterior embryonic structures. Development 126, 1427-1438.
    Feldman, B., Concha, M. L., Saude, L., Parsons, M. J., Adams, R. J., Wilson, S. W., and
    Stemple, D. L. (2002). Lefty antagonism of Squint is essential for normal gastrulation. Curr
    Biol 12, 2129-2135.
    Feldman, B., Gates, M. A., Egan, E. S., Dougan, S. T., Rennebeck, G., Sirotkin, H. I., Schier,
    A. F., and Talbot, W. S. (1998). Zebrafish organizer development and germ-layer formation
    require nodal-related signals. Nature 395, 181-185.
    Feng, X. H., and Derynck, R. (2005). Specificity and versatility in tgf-beta signaling through
    Smads. Annu Rev Cell Dev Biol 21, 659-693.
    Ferguson, E. L., and Anderson, K. V. (1992). Localized enhancement and repression of the
    activity of the TGF-beta family member, decapentaplegic, is necessary for dorsal-ventral
    pattern formation in the Drosophila embryo. Development 114, 583-597.
    Fisher, S., and Halpern, M. E. (1999). Patterning the zebrafish axial skeleton requires early
    chordin function. Nat Genet 23, 442-446.
    Furthauer, M., Lin, W., Ang, S. L., Thisse, B., and Thisse, C. (2002). Sef is a
    feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat Cell Biol 4,
    170-174.
    Furthauer, M., Van Celst, J., Thisse, C., and Thisse, B. (2004). Fgf signalling controls the
    dorsoventral patterning of the zebrafish embryo. Development 131, 2853-2864.
    Gaio, U., Schweickert, A., Fischer, A., Garratt, A. N., Muller, T., Ozcelik, C., Lankes, W.,
    Strehle, M., Britsch, S., Blum, M., and Birchmeier, C. (1999). A role of the cryptic gene in
    the correct establishment of the left-right axis. Curr Biol 9, 1339-1342.
    Gilardelli, C. N., Pozzoli, O., Sordino, P., Matassi, G., and Cotelli, F. (2004). Functional and
    hierarchical interactions among zebrafish vox/vent homeobox genes. Dev Dyn 230, 494-508.
    Gore, A. V., Maegawa, S., Cheong, A., Gilligan, P. C., Weinberg, E. S., and Sampath, K.
    (2005). The zebrafish dorsal axis is apparent at the four-cell stage. Nature 438, 1030-1035.
    Grapin-Botton, A., and Constam, D. (2007). Evolution of the mechanisms and molecular
    control of endoderm formation. Mech Dev 124, 253-278.
    Gritsman, K., Talbot, W. S., and Schier, A. F. (2000). Nodal signaling patterns the organizer.
    Development 127, 921-932.
    Hart, D. O., Raha, T., Lawson, N. D., and Green, M. R. (2007). Initiation of zebrafish
    haematopoiesis by the TATA-box-binding protein-related factor Trf3. Nature 450, 1082-1085.
    Havis, E., Anselme, I., and Schneider-Maunoury, S. (2006). Whole embryo chromatin
    immunoprecipitation protocol for the in vivo study of zebrafish development. Biotechniques
    40, 34, 36, 38 passim.
    Heisenberg, C. P., Houart, C., Take-Uchi, M., Rauch, G. J., Young, N., Coutinho, P., Masai, I.,
    Caneparo, L., Concha, M. L., Geisler, R., et al. (2001). A mutation in the Gsk3-binding
    domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and
    eyes to diencephalon. Genes Dev 15, 1427-1434.
    Hild, M., Dick, A., Rauch, G. J., Meier, A., Bouwmeester, T., Haffter, P., and Hammerschmidt,
    M. (1999). The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral
    patterning of the zebrafish embryo. Development 126, 2149-2159.
    Holley, S. A., Jackson, P. D., Sasai, Y., Lu, B., De Robertis, E. M., Hoffmann, F. M., and
    Ferguson, E. L. (1995). A conserved system for dorsal-ventral patterning in insects and
    vertebrates involving sog and chordin. Nature 376, 249-253.
    Howard, L., Rex, M., Clements, D., and Woodland, H. R. (2007). Regulation of the Xenopus
    Xsox17alpha(1) promoter by co-operating VegT and Sox17 sites. Dev Biol 310, 402-415.
    Hsiao, C. D., You, M. S., Guh, Y. J., Ma, M., Jiang, Y. J., and Hwang, P. P. (2007). A positive
    regulatory loop between foxi3a and foxi3b is essential for specification and differentiation of
    zebrafish epidermal ionocytes. PLoS ONE 2, e302.
    Imai, Y., Gates, M. A., Melby, A. E., Kimelman, D., Schier, A. F., and Talbot, W. S. (2001).
    The homeobox genes vox and vent are redundant repressors of dorsal fates in zebrafish.
    Development 128, 2407-2420.
    Jing, X. H., Zhou, S. M., Wang, W. Q., and Chen, Y. (2006). Mechanisms underlying longand
    short-range nodal signaling in Zebrafish. Mech Dev 123, 388-394.
    Jones, C. M., Kuehn, M. R., Hogan, B. L., Smith, J. C., and Wright, C. V. (1995).
    Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation.
    Development 121, 3651-3662.
    Julich, D., Hwee Lim, C., Round, J., Nicolaije, C., Schroeder, J., Davies, A., Geisler, R.,
    Lewis, J., Jiang, Y. J., and Holley, S. A. (2005). beamter/deltaC and the role of Notch ligands
    in the zebrafish somite segmentation, hindbrain neurogenesis and hypochord differentiation.
    Dev Biol 286, 391-404.
    Kari, G., Rodeck, U., and Dicker, A. P. (2007). Zebrafish: an emerging model system for
    human disease and drug discovery. Clin Pharmacol Ther 82, 70-80.
    Kawahara, A., Wilm, T., Solnica-Krezel, L., and Dawid, I. B. (2000). Functional interaction
    of vega2 and goosecoid homeobox genes in zebrafish. Genesis 28, 58-67.
    Keegan, B. R., Meyer, D., and Yelon, D. (2004). Organization of cardiac chamber progenitors
    in the zebrafish blastula. Development 131, 3081-3091.
    Kelly, C., Chin, A. J., Leatherman, J. L., Kozlowski, D. J., and Weinberg, E. S. (2000).
    Maternally controlled (beta)-catenin-mediated signaling is required for organizer formation in
    the zebrafish. Development 127, 3899-3911.
    Kidder, B. L., Yang, J., and Palmer, S. (2008). Stat3 and c-Myc genome-wide promoter
    occupancy in embryonic stem cells. PLoS ONE 3, e3932.
    Kikuchi, Y., Agathon, A., Alexander, J., Thisse, C., Waldron, S., Yelon, D., Thisse, B., and
    Stainier, D. Y. (2001). casanova encodes a novel Sox-related protein necessary and sufficient
    for early endoderm formation in zebrafish. Genes Dev 15, 1493-1505.
    Kikuchi, Y., Verkade, H., Reiter, J. F., Kim, C. H., Chitnis, A. B., Kuroiwa, A., and Stainier, D.
    Y. (2004). Notch signaling can regulate endoderm formation in zebrafish. Dev Dyn 229,
    756-762.
    Kikuta, H., Kanai, M., Ito, Y., and Yamasu, K. (2003). gbx2 Homeobox gene is required for
    the maintenance of the isthmic region in the zebrafish embryonic brain. Dev Dyn 228,
    433-450.
    Kimelman, D. (2006). Mesoderm induction: from caps to chips. Nat Rev Genet 7, 360-372.
    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. (1995).
    Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310.
    Kimmel, C. B., and Law, R. D. (1985). Cell lineage of zebrafish blastomeres. I. Cleavage
    pattern and cytoplasmic bridges between cells. Dev Biol 108, 78-85.
    Kimmel, C. B., Warga, R. M., and Schilling, T. F. (1990). Origin and organization of the
    zebrafish fate map. Development 108, 581-594.
    Kirchhamer, C. V., Yuh, C. H., and Davidson, E. H. (1996). Modular cis-regulatory
    organization of developmentally expressed genes: two genes transcribed territorially in the
    sea urchin embryo, and additional examples. Proc Natl Acad Sci U S A 93, 9322-9328.
    Kishimoto, Y., Lee, K. H., Zon, L., Hammerschmidt, M., and Schulte-Merker, S. (1997). The
    molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral
    patterning. Development 124, 4457-4466.
    Koos, D. S., and Ho, R. K. (1999). The nieuwkoid/dharma homeobox gene is essential for
    bmp2b repression in the zebrafish pregastrula. Dev Biol 215, 190-207.
    Kudoh, T., Concha, M. L., Houart, C., Dawid, I. B., and Wilson, S. W. (2004). Combinatorial
    Fgf and Bmp signalling patterns the gastrula ectoderm into prospective neural and epidermal
    domains. Development 131, 3581-3592.
    Kunwar, P. S., Zimmerman, S., Bennett, J. T., Chen, Y., Whitman, M., and Schier, A. F.
    (2003). Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling
    and mesendoderm induction. Development 130, 5589-5599.
    Lamont, R. E., and Childs, S. (2006). MAPping out arteries and veins. Sci STKE 2006, pe39.
    Lander, A. D., Nie, Q., Vargas, B., and Wan, F. Y. (2005). Aggregation of a Distributed
    Source in Morphogen Gradient Formation. SIAM Stud Appl Math 114, 343-374.
    Lander, A. D., Nie, Q., and Wan, F. Y. (2007). Membrane-associated non-receptors and
    morphogen gradients. Bull Math Biol 69, 33-54.
    Le Good, J. A., Joubin, K., Giraldez, A. J., Ben-Haim, N., Beck, S., Chen, Y., Schier, A. F.,
    and Constam, D. B. (2005). Nodal stability determines signaling range. Curr Biol 15, 31-36.
    Leung, T., Bischof, J., Soll, I., Niessing, D., Zhang, D., Ma, J., Jackle, H., and Driever, W.
    (2003). bozozok directly represses bmp2b transcription and mediates the earliest dorsoventral
    asymmetry of bmp2b expression in zebrafish. Development 130, 3639-3649.
    Levine, M., and Davidson, E. H. (2005). Gene regulatory networks for development. Proc
    Natl Acad Sci U S A 102, 4936-4942.
    Li, D. H., Chen, X. P., Zhang, W. G., and Qiu, F. Z. (2004). [HBx gene facilitates the
    proliferation activity of hepatoma cells in vitro and in vivo]. Zhonghua Wai Ke Za Zhi 42,
    104-106.
    Lieschke, G. J., and Currie, P. D. (2007). Animal models of human disease: zebrafish swim
    into view. Nat Rev Genet 8, 353-367.
    Liu, Z., Guo, J. T., Li, T., and Xu, Y. (2008). Structure-based prediction of transcription factor
    binding sites using a protein-DNA docking approach. Proteins 72, 1114-1124.
    Logan, C. Y., and Nusse, R. (2004). The Wnt signaling pathway in development and disease.
    Annu Rev Cell Dev Biol 20, 781-810.
    Longabaugh, W., and Bolouri, H. (2006). Understanding the Dynamic Behavior of Genetic
    Regulatory Networks by Functional Decomposition. Curr Genomics 7, 333-341.
    Longabaugh, W. J., Davidson, E. H., and Bolouri, H. (2005). Computational representation of
    developmental genetic regulatory networks. Dev Biol 283, 1-16.
    Loose, M., and Patient, R. (2004). A genetic regulatory network for Xenopus mesendoderm
    formation. Dev Biol 271, 467-478.
    Lunde, K., Belting, H. G., and Driever, W. (2004). Zebrafish pou5f1/pou2, homolog of
    mammalian Oct4, functions in the endoderm specification cascade. Curr Biol 14, 48-55.
    Mari-Beffa, M., Santamaria, J. A., Murciano, C., Santos-Ruiz, L., Andrades, J. A., Guerado,
    E., and Becerra, J. (2007). Zebrafish fins as a model system for skeletal human studies.
    ScientificWorldJournal 7, 1114-1127.
    Martin, B. L., and Kimelman, D. (2007). Developmental biology: micro(RNA)-managing
    nodal. Curr Biol 17, R975-977.
    Martinez-Barbera, J. P., Toresson, H., Da Rocha, S., and Krauss, S. (1997). Cloning and
    expression of three members of the zebrafish Bmp family: Bmp2a, Bmp2b and Bmp4. Gene
    198, 53-59.
    Mavropoulos, A., Devos, N., Biemar, F., Zecchin, E., Argenton, F., Edlund, H., Motte, P.,
    Martial, J. A., and Peers, B. (2005). sox4b is a key player of pancreatic alpha cell
    differentiation in zebrafish. Dev Biol 285, 211-223.
    Melby, A. E., Beach, C., Mullins, M., and Kimelman, D. (2000). Patterning the early
    zebrafish by the opposing actions of bozozok and vox/vent. Dev Biol 224, 275-285.
    Meyer, A., and Malaga-Trillo, E. (1999). Vertebrate genomics: More fishy tales about Hox
    genes. Curr Biol 9, R210-213.
    Miller-Bertoglio, V., Carmany-Rampey, A., Furthauer, M., Gonzalez, E. M., Thisse, C.,
    Thisse, B., Halpern, M. E., and Solnica-Krezel, L. (1999). Maternal and zygotic activity of
    the zebrafish ogon locus antagonizes BMP signaling. Dev Biol 214, 72-86.
    Mizoguchi, T., Izawa, T., Kuroiwa, A., and Kikuchi, Y. (2006). Fgf signaling negatively
    regulates Nodal-dependent endoderm induction in zebrafish. Dev Biol 300, 612-622.
    Mizuno, T., Yamaha, E., Kuroiwa, A., and Takeda, H. (1999). Removal of vegetal yolk causes
    dorsal deficencies and impairs dorsal-inducing ability of the yolk cell in zebrafish. Mech Dev
    81, 51-63.
    Moqtaderi, Z., and Struhl, K. (2004). Defining in vivo targets of nuclear proteins by
    chromatin immunoprecipitation and microarray analysis. Curr Protoc Mol Biol Chapter 21,
    Unit 21 29.
    Muller, F., Albert, S., Blader, P., Fischer, N., Hallonet, M., and Strahle, U. (2000). Direct
    action of the nodal-related signal cyclops in induction of sonic hedgehog in the ventral
    midline of the CNS. Development 127, 3889-3897.
    Nair, S., and Schilling, T. F. (2008). Chemokine signaling controls endodermal migration
    during zebrafish gastrulation. Science 322, 89-92.
    Nasevicius, A., Hyatt, T., Kim, H., Guttman, J., Walsh, E., Sumanas, S., Wang, Y., and Ekker,
    S. C. (1998). Evidence for a frizzled-mediated wnt pathway required for zebrafish dorsal
    mesoderm formation. Development 125, 4283-4292.
    Nguyen, V. H., Schmid, B., Trout, J., Connors, S. A., Ekker, M., and Mullins, M. C. (1998).
    Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are
    established by a bmp2b/swirl pathway of genes. Dev Biol 199, 93-110.
    O'Brien, R., DeDecker, B., Fleming, K. G., Sigler, P. B., and Ladbury, J. E. (1998). The
    effects of salt on the TATA binding protein-DNA interaction from a hyperthermophilic
    archaeon. J Mol Biol 279, 117-125.
    Ober, E. A., and Schulte-Merker, S. (1999). Signals from the yolk cell induce mesoderm,
    neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev Biol 215, 167-181.
    Ochi, H., and Westerfield, M. (2007). Signaling networks that regulate muscle development:
    lessons from zebrafish. Dev Growth Differ 49, 1-11.
    Oliveri, P., and Davidson, E. H. (2004). Gene regulatory network analysis in sea urchin
    embryos. Methods Cell Biol 74, 775-794.
    Oliveri, P., and Davidson, E. H. (2007). Development. Built to run, not fail. Science 315,
    1510-1511.
    Oliveri, P., Walton, K. D., Davidson, E. H., and McClay, D. R. (2006). Repression of
    mesodermal fate by foxa, a key endoderm regulator of the sea urchin embryo. Development
    133, 4173-4181.
    Olson, E. N. (2006). Gene regulatory networks in the evolution and development of the heart.
    Science 313, 1922-1927.
    Patterson, L. J., Gering, M., and Patient, R. (2005). Scl is required for dorsal aorta as well as
    blood formation in zebrafish embryos. Blood 105, 3502-3511.
    Pelegri, F. (2003). Maternal factors in zebrafish development. Dev Dyn 228, 535-554.
    Perlin, J. R., and Talbot, W. S. (2007). Signals on the move: chemokine receptors and
    organogenesis in zebrafish. Sci STKE 2007, pe45.
    Peterkin, T., Gibson, A., and Patient, R. (2003). GATA-6 maintains BMP-4 and Nkx2
    expression during cardiomyocyte precursor maturation. Embo J 22, 4260-4273.
    Poulain, M., Furthauer, M., Thisse, B., Thisse, C., and Lepage, T. (2006). Zebrafish endoderm
    formation is regulated by combinatorial Nodal, FGF and BMP signalling. Development 133,
    2189-2200.
    Poulain, M., and Lepage, T. (2002). Mezzo, a paired-like homeobox protein is an immediate
    target of Nodal signalling and regulates endoderm specification in zebrafish. Development
    129, 4901-4914.
    Preger, E., Ziv, I., Shabtay, A., Sher, I., Tsang, M., Dawid, I. B., Altuvia, Y., and Ron, D.
    (2004). Alternative splicing generates an isoform of the human Sef gene with altered
    subcellular localization and specificity. Proc Natl Acad Sci U S A 101, 1229-1234.
    Pyati, U. J., Look, A. T., and Hammerschmidt, M. (2007). Zebrafish as a powerful vertebrate
    model system for in vivo studies of cell death. Semin Cancer Biol 17, 154-165.
    Qu, X. B., Pan, J., Zhang, C., and Huang, S. Y. (2008). Sox17 facilitates the differentiation of
    mouse embryonic stem cells into primitive and definitive endoderm in vitro. Dev Growth
    Differ.
    Ramel, M. C., and Lekven, A. C. (2004). Repression of the vertebrate organizer by Wnt8 is
    mediated by Vent and Vox. Development 131, 3991-4000.
    Rastegar, S., Albert, S., Le Roux, I., Fischer, N., Blader, P., Muller, F., and Strahle, U. (2002).
    A floor plate enhancer of the zebrafish netrin1 gene requires Cyclops (Nodal) signalling and
    the winged helix transcription factor FoxA2. Dev Biol 252, 1-14.
    Reim, G., Mizoguchi, T., Stainier, D. Y., Kikuchi, Y., and Brand, M. (2004). The POU domain
    protein spg (pou2/Oct4) is essential for endoderm formation in cooperation with the HMG
    domain protein casanova. Dev Cell 6, 91-101.
    Reiter, J. F., Kikuchi, Y., and Stainier, D. Y. (2001). Multiple roles for Gata5 in zebrafish
    endoderm formation. Development 128, 125-135.
    Rhinn, M., Lun, K., Amores, A., Yan, Y. L., Postlethwait, J. H., and Brand, M. (2003).
    Cloning, expression and relationship of zebrafish gbx1 and gbx2 genes to Fgf signaling.
    Mech Dev 120, 919-936.
    Ross, J. J., Shimmi, O., Vilmos, P., Petryk, A., Kim, H., Gaudenz, K., Hermanson, S., Ekker,
    S. C., O'Connor, M. B., and Marsh, J. L. (2001). Twisted gastrulation is a conserved
    extracellular BMP antagonist. Nature 410, 479-483.
    Ryu, S. L., Fujii, R., Yamanaka, Y., Shimizu, T., Yabe, T., Hirata, T., Hibi, M., and Hirano, T.
    (2001). Regulation of dharma/bozozok by the Wnt pathway. Dev Biol 231, 397-409.
    Sakaguchi, T., Kuroiwa, A., and Takeda, H. (2001). A novel sox gene, 226D7, acts
    downstream of Nodal signaling to specify endoderm precursors in zebrafish. Mech Dev 107,
    25-38.
    Sampath, K., Rubinstein, A. L., Cheng, A. M., Liang, J. O., Fekany, K., Solnica-Krezel, L.,
    Korzh, V., Halpern, M. E., and Wright, C. V. (1998). Induction of the zebrafish ventral brain
    and floorplate requires cyclops/nodal signalling. Nature 395, 185-189.
    Satou, Y., and Satoh, N. (2006). Gene regulatory networks for the development and evolution
    of the chordate heart. Genes Dev 20, 2634-2638.
    Schier, A. F., and Talbot, W. S. (2005). Molecular genetics of axis formation in zebrafish.
    Annu Rev Genet 39, 561-613.
    Schmid, B., Furthauer, M., Connors, S. A., Trout, J., Thisse, B., Thisse, C., and Mullins, M. C.
    (2000). Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern
    formation. Development 127, 957-967.
    Schneider, S., Steinbeisser, H., Warga, R. M., and Hausen, P. (1996). Beta-catenin
    translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech
    Dev 57, 191-198.
    Schoenebeck, J. J., and Yelon, D. (2007). Illuminating cardiac development: Advances in
    imaging add new dimensions to the utility of zebrafish genetics. Semin Cell Dev Biol 18,
    27-35.
    Scott, I. C., Blitz, I. L., Pappano, W. N., Maas, S. A., Cho, K. W., and Greenspan, D. S.
    (2001). Homologues of Twisted gastrulation are extracellular cofactors in antagonism of
    BMP signalling. Nature 410, 475-478.
    Seguin, C. A., Draper, J. S., Nagy, A., and Rossant, J. (2008). Establishment of endoderm
    progenitors by SOX transcription factor expression in human embryonic stem cells. Cell
    Stem Cell 3, 182-195.
    Shah, B. H., Baukal, A. J., Chen, H. D., Shah, A. B., and Catt, K. J. (2006a). Mechanisms of
    endothelin-1-induced MAP kinase activation in adrenal glomerulosa cells. J Steroid Biochem
    Mol Biol 102, 79-88.
    Shah, P., Nankova, B. B., Parab, S., and La Gamma, E. F. (2006b). Short chain fatty acids
    induce TH gene expression via ERK-dependent phosphorylation of CREB protein. Brain Res
    1107, 13-23.
    Shimizu, T., Yamanaka, Y., Nojima, H., Yabe, T., Hibi, M., and Hirano, T. (2002). A novel
    repressor-type homeobox gene, ved, is involved in dharma/bozozok-mediated dorsal
    organizer formation in zebrafish. Mech Dev 118, 125-138.
    Shimizu, T., Yamanaka, Y., Ryu, S. L., Hashimoto, H., Yabe, T., Hirata, T., Bae, Y. K., Hibi,
    M., and Hirano, T. (2000). Cooperative roles of Bozozok/Dharma and Nodal-related proteins
    in the formation of the dorsal organizer in zebrafish. Mech Dev 91, 293-303.
    Shinya, M., Eschbach, C., Clark, M., Lehrach, H., and Furutani-Seiki, M. (2000). Zebrafish
    Dkk1, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and
    patterns the anterior neural plate. Mech Dev 98, 3-17.
    Shivdasani, R. A. (2002). Molecular regulation of vertebrate early endoderm development.
    Dev Biol 249, 191-203.
    Shoguchi, E., Hamaguchi, M., and Satoh, N. (2008). Genome-wide network of regulatory
    genes for construction of a chordate embryo. Dev Biol 316, 498-509.
    Siggers, T. W., Silkov, A., and Honig, B. (2005). Structural alignment of protein--DNA
    interfaces: insights into the determinants of binding specificity. J Mol Biol 345, 1027-1045.
    Singh, H., Pongubala, J. M., and Medina, K. L. (2007). Gene regulatory networks that
    orchestrate the development of B lymphocyte precursors. Adv Exp Med Biol 596, 57-62.
    Sirotkin, H. I., Dougan, S. T., Schier, A. F., and Talbot, W. S. (2000). bozozok and squint act
    in parallel to specify dorsal mesoderm and anterior neuroectoderm in zebrafish. Development
    127, 2583-2592.
    Smith, J., and Davidson, E. H. (2008). Gene regulatory network subcircuit controlling a
    dynamic spatial pattern of signaling in the sea urchin embryo. Proc Natl Acad Sci U S A 105,
    20089-20094.
    Solnica-Krezel, L., and Driever, W. (2001). The role of the homeodomain protein Bozozok in
    zebrafish axis formation. Int J Dev Biol 45, 299-310.
    Sprague, J., Bayraktaroglu, L., Bradford, Y., Conlin, T., Dunn, N., Fashena, D., Frazer, K.,
    Haendel, M., Howe, D. G., Knight, J., et al. (2008). The Zebrafish Information Network: the
    zebrafish model organism database provides expanded support for genotypes and phenotypes.
    Nucleic Acids Res 36, D768-772.
    Sprague, J., Bayraktaroglu, L., Clements, D., Conlin, T., Fashena, D., Frazer, K., Haendel, M.,
    Howe, D. G., Mani, P., Ramachandran, S., et al. (2006). The Zebrafish Information Network:
    the zebrafish model organism database. Nucleic Acids Res 34, D581-585.
    Sprague, J., Clements, D., Conlin, T., Edwards, P., Frazer, K., Schaper, K., Segerdell, E.,
    Song, P., Sprunger, B., and Westerfield, M. (2003). The Zebrafish Information Network
    (ZFIN): the zebrafish model organism database. Nucleic Acids Res 31, 241-243.
    Steffen, N. R., Murphy, S. D., Tolleri, L., Hatfield, G. W., and Lathrop, R. H. (2002). DNA
    sequence and structure: direct and indirect recognition in protein-DNA binding.
    Bioinformatics 18 Suppl 1, S22-30.
    Stern, H. M., and Zon, L. I. (2003). Cancer genetics and drug discovery in the zebrafish. Nat
    Rev Cancer 3, 533-539.
    Tan, Y., Rouse, J., Zhang, A., Cariati, S., Cohen, P., and Comb, M. J. (1996). FGF and stress
    regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2.
    Embo J 15, 4629-4642.
    Thisse, B., and Thisse, C. (2005). Functions and regulations of fibroblast growth factor
    signaling during embryonic development. Dev Biol 287, 390-402.
    Tiso, N., Filippi, A., Pauls, S., Bortolussi, M., and Argenton, F. (2002). BMP signalling
    regulates anteroposterior endoderm patterning in zebrafish. Mech Dev 118, 29-37.
    Tsang, M., Maegawa, S., Kiang, A., Habas, R., Weinberg, E., and Dawid, I. B. (2004). A role
    for MKP3 in axial patterning of the zebrafish embryo. Development 131, 2769-2779.
    Turner, F. B., Cheung, W. L., and Cheung, P. (2006). Chromatin immunoprecipitation assay
    for mammalian tissues. Methods Mol Biol 325, 261-272.
    van Es, J. H., Barker, N., and Clevers, H. (2003). You Wnt some, you lose some: oncogenes
    in the Wnt signaling pathway. Curr Opin Genet Dev 13, 28-33.
    Vokes, S. A., Ji, H., McCuine, S., Tenzen, T., Giles, S., Zhong, S., Longabaugh, W. J.,
    Davidson, E. H., Wong, W. H., and McMahon, A. P. (2007). Genomic characterization of
    Gli-activator targets in sonic hedgehog-mediated neural patterning. Development 134,
    1977-1989.
    von Bubnoff, A., and Cho, K. W. (2001). Intracellular BMP signaling regulation in
    vertebrates: pathway or network? Dev Biol 239, 1-14.
    von Hofsten, J., Elworthy, S., Gilchrist, M. J., Smith, J. C., Wardle, F. C., and Ingham, P. W.
    (2008). Prdm1- and Sox6-mediated transcriptional repression specifies muscle fibre type in
    the zebrafish embryo. EMBO Rep 9, 683-689.
    Wagner, D. S., and Mullins, M. C. (2002). Modulation of BMP activity in dorsal-ventral
    pattern formation by the chordin and ogon antagonists. Dev Biol 245, 109-123.
    Wardle, F. C., Odom, D. T., Bell, G. W., Yuan, B., Danford, T. W., Wiellette, E. L.,
    Herbolsheimer, E., Sive, H. L., Young, R. A., and Smith, J. C. (2006). Zebrafish promoter
    microarrays identify actively transcribed embryonic genes. Genome Biol 7, R71.
    Warga, R. M., and Nusslein-Volhard, C. (1999). Origin and development of the zebrafish
    endoderm. Development 126, 827-838.
    Wei, C. L., Wu, Q., Vega, V. B., Chiu, K. P., Ng, P., Zhang, T., Shahab, A., Yong, H. C., Fu, Y.,
    Weng, Z., et al. (2006). A global map of p53 transcription-factor binding sites in the human
    genome. Cell 124, 207-219.
    Werner, T., Hammer, A., Wahlbuhl, M., Bosl, M. R., and Wegner, M. (2007). Multiple
    conserved regulatory elements with overlapping functions determine Sox10 expression in
    mouse embryogenesis. Nucleic Acids Res 35, 6526-6538.
    Westerfield, M., Doerry, E., Kirkpatrick, A. E., and Douglas, S. A. (1999). Zebrafish
    informatics and the ZFIN database. Methods Cell Biol 60, 339-355.
    Westerfield, O. (1995). A prescription for hospital safety: treating workplace violence.
    Healthc Facil Manag Ser, 1-8.
    Woo, K., and Fraser, S. E. (1995). Order and coherence in the fate map of the zebrafish
    nervous system. Development 121, 2595-2609.
    Woo, K., Shih, J., and Fraser, S. E. (1995). Fate maps of the zebrafish embryo. Curr Opin
    Genet Dev 5, 439-443.
    Yamanaka, Y., Mizuno, T., Sasai, Y., Kishi, M., Takeda, H., Kim, C. H., Hibi, M., and Hirano,
    T. (1998). A novel homeobox gene, dharma, can induce the organizer in a
    non-cell-autonomous manner. Genes Dev 12, 2345-2353.
    Yamashita, S., Miyagi, C., Carmany-Rampey, A., Shimizu, T., Fujii, R., Schier, A. F., and
    Hirano, T. (2002). Stat3 Controls Cell Movements during Zebrafish Gastrulation. Dev Cell 2,
    363-375.
    Yuh, C. H., Bolouri, H., and Davidson, E. H. (1998). Genomic cis-regulatory logic:
    experimental and computational analysis of a sea urchin gene. Science 279, 1896-1902.
    Yuh, C. H., and Davidson, E. H. (1996). Modular cis-regulatory organization of Endo16, a
    gut-specific gene of the sea urchin embryo. Development 122, 1069-1082.
    Yuh, C. H., Dorman, E. R., and Davidson, E. H. (2005). Brn1/2/4, the predicted midgut
    regulator of the endo16 gene of the sea urchin embryo. Dev Biol 281, 286-298.
    Yuh, C. H., Dorman, E. R., Howard, M. L., and Davidson, E. H. (2004). An otx cis-regulatory
    module: a key node in the sea urchin endomesoderm gene regulatory network. Dev Biol 269,
    536-551.
    Zacchigna, S., Ruiz de Almodovar, C., and Carmeliet, P. (2008). Similarities between
    angiogenesis and neural development: what small animal models can tell us. Curr Top Dev
    Biol 80, 1-55.
    Zhao, J., Cao, Y., Zhao, C., Postlethwait, J., and Meng, A. (2003). An SP1-like transcription
    factor Spr2 acts downstream of Fgf signaling to mediate mesoderm induction. Embo J 22,
    6078-6088.
    Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L., and Kuehn, M. R. (1993). Nodal is a novel
    TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361, 543-547.
    Zimonjic, D. B., Kelley, M. J., Rubin, J. S., Aaronson, S. A., and Popescu, N. C. (1997).
    Fluorescence in situ hybridization analysis of keratinocyte growth factor gene amplification
    and dispersion in evolution of great apes and humans. Proc Natl Acad Sci U S A 94,
    11461-11465.
    Zorn, A. M., and Wells, J. M. (2007). Molecular basis of vertebrate endoderm development.
    Int Rev Cytol 259, 49-111.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE