研究生: |
吳宗憲 Wu, Zong Sian |
---|---|
論文名稱: |
Suramin藥物阻絕 hFGF1 和 FGFR2 D2 domain 之間的結合並降低下游訊號生物活性 Suramin Blocks Interaction between Human FGF1 and FGFR2 D2 Domain and Reduces Downstream Signaling Activity |
指導教授: |
余靖
Yu, Chin |
口試委員: |
莊偉哲
Chuang, Woei Jer 陳金榜 Chen, Chin Pan |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 母纖維生長因子 、母纖維生長因子受體 、蘇拉明 、蛋白質純化 、核磁共振儀水溶液結構 、蛋白質-配體作用 、HADDOCK 、WST-1 分析 |
外文關鍵詞: | fibroblast growth factor (FGF), fibroblast growth factor receptor (FGFR), Suramin, protein purification, NMR solution structure, Protein-ligand interaction, HADDOCK, WST-1 assay |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類纖維母細胞生長因子蛋白(hFGF)家族,是由22種以上結構具有高度相似性的人類纖維母細胞生長因子蛋白所組成,而人類纖維母細胞生長因子蛋白(hFGF1)為hFGF家族蛋白中的一份子,其結構主要由β-sheet組成,是一個具有廣泛病理及生理活性的蛋白質。FGFR2是人類纖維母細胞生長因子受體蛋白(FGFR)家族成員之一,一直以來主要被認為是誘發hFGF1的重要受體,一旦hFGF1與FGFR2結合,將會誘發多個生物訊號傳遞,進而促進細胞增生、細胞分化、促進血管生成、以及促進傷口癒合等。
Suramin在之前研究,已被證實可抑制生長因子,是一種生長因子拮抗劑,因此在本篇研究,我們選用suramin當作hFGF1與FGFR2 D2 domain的阻絕藥物。本實驗希望能夠進一步了解hFGF1-FGFR2 D2 domain與hFGF1-Suramin之間各別交互作用,並利用HADDOCK軟體計算蛋白質錯合物結構及WST1 assay解析對細胞生理活性的影響。
在本實驗中,我們希望藉由核磁共振技術來了解hFGF1-FGFR2 D2 domain與hFGF1-Suramin的反應,利用HSQC找出殘基作用的位置,再利用實驗所得的距離、氫鍵限制條件和雙面角等,經由HADDOCK計算出結構,搭配PyMOL軟體顯示出三維結構並找出其作用力;最後藉由WST1 assay,進而推測出hFGF1-Suramin-FGFR2 D2 domain三者間的生物活性。
在本篇研究能夠幫助我們更加了解hFGF1-Suramin-FGFR2 D2 domain三者之間的反應、三維結構和生物活性,並希望此篇研究對於抗癌藥物有進一步的幫助,且發展出與suramin相關的衍生物和新型具有生物活性的拮抗劑。
The human fibroblast growth factor (hFGF) family has a high degree of structural similarity. hFGFs have been classified into 22 subcategories. FGFs are β-sheet proteins which has extensive of pathological and physiological activity of the proteins. The extracellular portion of hFGF1 interacts with FGFR2 D2, generating three common downstream signaling cascades that ultimately affects mitosis and differentiation. Suramin is an antiparasitic drug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, blocking the interaction between hFGF1 and FGFR2 D2. In this study, we used Varian 700 MHz NMR to titrate hFGF1 with FGFR2 D2 and suramin to elucidate their interactions and binding constant. From HSQC and ITC data, we can know the residues of protein-protein binding regions and the interaction between protein-protein and protein-drug respectively. We further use HADDOCK to calculate protein-protein and protein-drug complex model. Then docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed and further analyzed. We used the PyMOL software to prove the electrostatic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity.
Based on our findings, the results will be useful for synthesis the derivatives of drug and the development of new antimitogenic activity drugs.
1. Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. Journal of biomolecular NMR 2009;44(4):213-223.
2. Nilges M, Macias MJ, O'Donoghue SI, Oschkinat H. Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J Mol Biol 1997;269(3):408-22.
3. Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE, Nilges M. ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 2007;23(3):381-382.
4. Ishima R, Torchia DA. Protein dynamics from NMR. Nat Struct Biol 2000;7(9):740-3.
5. Englander SW, Sosnick TR, Englander JJ, Mayne L. Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol 1996;6(1):18-23.
6. Kim KS, Fuchs JA, Woodward CK. Hydrogen exchange identifies native-state motional domains important in protein folding. Biochemistry 1993;32(37):9600-8.
7. Bai Y, Milne JS, Mayne L, Englander SW. Protein stability parameters measured by hydrogen exchange. Proteins 1994;20(1):4-14.
8. Sivaraman T, Arrington CB, Robertson AD. Kinetics of unfolding and folding from amide hydrogen exchange in native ubiquitin. Nature Structural & Molecular Biology 2001;8(4):331-333.
9. Blaber M, DiSalvo J, Thomas KA. X-ray crystal structure of human acidic fibroblast growth factor. Biochemistry 1996;35(7):2086-94.
10. Mellin TN, Mennie RJ, Cashen DE, Ronan JJ, Capparella J, James ML, Disalvo J, Frank J, Linemeyer D, Gimenez-Gallego G and others. Acidic fibroblast growth factor accelerates dermal wound healing. Growth Factors 1992;7(1):1-14.
11. Ogura K, Nagata K, Hatanaka H, Habuchi H, Kimata K, Tate S-i, Ravera MW, Jaye M, Schlessinger J, Inagaki F. Solution structure of human acidic fibroblast growth factor and interaction with heparin-derived hexasaccharide. Journal of biomolecular NMR 1999;13(1):11-24.
12. JI H, LI Z-g. FGF and Central Nervous System. Progress of Anatomical Sciences 2004;2:026.
13. Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 2009;8(3):235-53.
14. Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 2010;10(2):116-29.
15. Wang HM, Yu C. Investigating the Refolding Pathway of Human Acidic Fibroblast Growth Factor (hFGF-1) from the Residual Structure(s) Obtained by Denatured-State Hydrogen/Deuterium Exchange. Biophys J 2011;100(1):154-64.
16. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 1991;64(4):841-8.
17. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996;271(25):15292-7.
18. Givol D, Yayon A. Complexity of FGF receptors: genetic basis for structural diversity and functional specificity. Faseb j 1992;6(15):3362-9.
19. Johnson DE, Williams LT. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 1993;60:1-41.
20. Lee PL, Johnson DE, Cousens LS, Fried VA, Williams LT. Purification and complementary DNA cloning of a receptor for basic fibroblast growth factor. Science 1989;245(4913):57-60.
21. Folkman J, Klagsbrun M. Angiogenic factors. Science 1987;235(4787):442-7.
22. Johnson DE, Lee PL, Lu J, Williams LT. Diverse forms of a receptor for acidic and basic fibroblast growth factors. Mol Cell Biol 1990;10(9):4728-36.
23. Powers CJ, McLeskey SW, Wellstein A. Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 2000;7(3):165-97.
24. Groth C, Lardelli M. The structure and function of vertebrate fibroblast growth factor receptor 1. Int J Dev Biol 2002;46(4):393-400.
25. Fu X, Yang Y, Li X, Sun T, Wang Y, Sheng Z. Ischemia and reperfusion impair the gene expression of endogenous basic fibroblast growth factor (bFGF) in rat skeletal muscles. Journal of Surgical Research 1998;80(1):88-93.
26. Pollock P, Gartside M, Dejeza L, Powell M, Mallon MA, Davies H, Mohammadi M, Futreal P, Stratton M, Trent J. Frequent activating FGFR2 mutations in endometrial carcinomas parallel germline mutations associated with craniosynostosis and skeletal dysplasia syndromes. Oncogene 2007;26(50):7158-7162.
27. Davies H, Hunter C, Smith R, Stephens P, Greenman C, Bignell G, Teague J, Butler A, Edkins S, Stevens C. Somatic mutations of the protein kinase gene family in human lung cancer. Cancer research 2005;65(17):7591-7595.
28. Jang J-H, Shin K-H, Park J-G. Mutations in fibroblast growth factor receptor 2 and fibroblast growth factor receptor 3 genes associated with human gastric and colorectal cancers. Cancer Research 2001;61(9):3541-3543.
29. Ornitz DM. FGF signaling in the developing endochondral skeleton. Cytokine Growth Factor Rev 2005;16(2):205-13.
30. Kuro-o M. Endocrine FGFs and Klothos: emerging concepts. Trends Endocrinol Metab 2008;19(7):239-45.
31. Szebenyi G, Fallon JF. Fibroblast growth factors as multifunctional signaling factors. International review of cytology 1998;185:45-106.
32. Klint P, Claesson-Welsh L. Signal transduction by fibroblast growth factor receptors. Front Biosci 1999;4(22):D165-77.
33. Schlessinger J. Common and distinct elements in cellular signaling via EGF and FGF receptors. Science 2004;306(5701):1506-7.
34. Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol 2005;287(2):390-402.
35. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005;16(2):139-49.
36. Dailey L, Ambrosetti D, Mansukhani A, Basilico C. Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 2005;16(2):233-47.
37. Minniti CP, Maggi M, Helman LJ. Suramin inhibits the growth of human rhabdomyosarcoma by interrupting the insulin-like growth factor II autocrine growth loop. Cancer Res 1992;52(7):1830-5.
38. Burgess WH, Maciag T. The heparin-binding (fibroblast) growth factor family of proteins. Annu Rev Biochem 1989;58:575-606.
39. Middaugh CR, Mach H, Burke CJ, Volkin DB, Dabora JM, Tsai PK, Bruner MW, Ryan JA, Marfia KE. Nature of the interaction of growth factors with suramin. Biochemistry 1992;31(37):9016-24.
40. Ganesh VK, Muthuvel SK, Smith SA, Kotwal GJ, Murthy KH. Structural basis for antagonism by suramin of heparin binding to vaccinia complement protein. Biochemistry 2005;44(32):10757-65.
41. Lozano RM, Jimenez M, Santoro J, Rico M, Gimenez-Gallego G. Solution structure of acidic fibroblast growth factor bound to 1,3, 6-naphthalenetrisulfonate: a minimal model for the anti-tumoral action of suramins and suradistas. J Mol Biol 1998;281(5):899-915.
42. Zamai M, Hariharan C, Pines D, Safran M, Yayon A, Caiolfa VR, Cohen-Luria R, Pines E, Parola AH. Nature of Interaction between basic fibroblast growth factor and the antiangiogenic drug 7,7-(carbonyl-bis[imino-N-methyl-4,2-pyrrolecarbonylimino[N-methyl-4,2-pyrrole]-c arbonylimino])-bis-(1,3-naphtalene disulfonate). II. Removal of polar interactions affects protein folding. Biophys J 2002;82(5):2652-64.
43. Botta M, Manetti F, Corelli F. Fibroblast growth factors and their inhibitors. Curr Pharm Des 2000;6(18):1897-924.
44. Wang LL, Li JJ, Zheng ZB, Liu HY, Du GJ, Li S. Antitumor activities of a novel indolin-2-ketone compound, Z24: more potent inhibition on bFGF-induced angiogenesis and bcl-2 over-expressing cancer cells. Eur J Pharmacol 2004;502(1-2):1-10.
45. Zhao L, Wientjes MG, Au JL. Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res 2004;10(23):7994-8004.
46. McCain DF, Wu L, Nickel P, Kassack MU, Kreimeyer A, Gagliardi A, Collins DC, Zhang ZY. Suramin derivatives as inhibitors and activators of protein-tyrosine phosphatases. J Biol Chem 2004;279(15):14713-25.
47. De Vries SJ, van Dijk M, Bonvin AM. The HADDOCK web server for data-driven biomolecular docking. Nature protocols 2010;5(5):883-897.
48. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 2005;11:127-52.
49. DeLano WL. The PyMOL molecular graphics system. 2002.
50. McInnes C, Grothe S, O'Connor-McCourt M, Sykes BD. NMR study of the differential contributions of residues of transforming growth factor alpha to association with its receptor. Protein Eng 2000;13(3):143-7.
51. Lane AN, Lefevre JF. Nuclear magnetic resonance measurements of slow conformational dynamics in macromolecules. Methods Enzymol 1994;239:596-619.
52. Murakami Y, Jones S. SHARP2: protein-protein interaction predictions using patch analysis. Bioinformatics 2006;22(14):1794-5.
53. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 1996;8(4):477-86.
54. Kathir KM, Kumar TK, Yu C. Understanding the mechanism of the antimitogenic activity of suramin. Biochemistry 2006;45(3):899-906.