簡易檢索 / 詳目顯示

研究生: 林子寗
Lin, Zih-Ning.
論文名稱: 利用邊端運算提升效能之蜂巢式物聯網上行排程演算法設計與開發
Edge Computing-Enhanced Uplink Scheduling for Energy-Constrained Cellular Internet of Things
指導教授: 楊舜仁
Yang, Shun-Ren
口試委員: 高榮駿
Kao, Jung-Chun
蕭旭峰
Hsiao, Hsu-Feng
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 46
中文關鍵詞: 機器對機器通訊物聯網多重存取邊端運算無線資源分配OpenAirInterface
外文關鍵詞: Radio Resource Allocation, Machine-to-Machine (M2M), Internet of Things (IoT), Multi-access Edge Computing (MEC), OpenAirInterface
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機器型態通訊技術支援各式各樣的機器對機器的相關應用,而對於這些應用,節省能
    源消耗是一項非常重要的議題;此外,機器型態通訊技術同時也被預期能夠支援物連
    網服務,而隨著物聯網裝置數量的急遽成長,吞吐量以及封包延遲等服務品質的指標
    也成為重要的議題。過去已經有許多上行排程演算法在討論這些議題,然而這兩種議
    題是需要權衡的,降低能源消耗的話,服務品質就會下降,反之亦然。但是我們利用
    多重存取邊端運算技術提出一個新的上行排程演算法,可以在降低能源消耗的同時盡
    可能提高服務品質。為了評估我們提出的演算法的效能,利用OpenAirInterface作為實
    作與模擬平台進行開發並收集實驗數據,除此之外,我們還實作輪循以及部分公平演
    算法作為比較用的演算法。最後,我們針對實驗結果進行分析,並且實驗結果說明我
    們提出的演算法具有較好的效能。此外,我們也有探討多重存取邊端運算技術所提供
    的運算能力對於系統效能的影響。


    Machine Type Communications (MTC) supports various Machine-to-Machine (M2M) ap-
    plications, where the energy eciency is a key issue. In addition, MTC is expected to
    support a variety of Internet of Things (IoT) services, and the number of IoT devices
    is rapidly growing which causes the improvement of the system performance is neces-
    sary. Many uplink scheduling algorithms consider the power consumption or aim to the
    system performance, but not both. In this thesis, we propose an scheduling algorithm
    assisted by a emerging technology, Multi-access Edge Computing (MEC), and our algo-
    rithm minimizes the energy consumption and improves the system performance as much
    as possible. In order to evaluate our algorithm, we use LTE as an example and OpenAir-
    Interface (OAI) as a testbed, because the simulation platform of LTE is fully developed
    and more reliable. In this thesis, the overview of OAI scheduler is introduced, and the
    implementation of our algorithm using OAI are detailed. Compared with Round-Robin
    (RR) and Proportional fair (PF) algorithm, our performance study shows that our al-
    gorithm improves the performance in terms of the energy consumption and the system
    performance. Moreover, through the simulation results, we analyze the relation between
    the computational capability of the MEC server and the system performance.

    摘要 Abstract Contents List of Figures List of Tables 1 Introduction------------------------------------1 2 Related Work------------------------------------5 3 System Model and Problem Formulation------------7 3.1 System model----------------------------------7 3.2 Problem Formulation--------------------------10 4 Scheduling Algorithm---------------------------13 4.1 Concept of the Algorithm---------------------13 4.2 Procedure of the Algorithm-------------------14 5 OAI Simulator Overview-------------------------18 5.1 OAI-SIM protocol stack-----------------------18 5.1.1 PHY----------------------------------------18 5.1.2 MAC----------------------------------------19 5.1.3 OTG----------------------------------------19 5.2 Data structures------------------------------20 5.2.1 UE template--------------------------------20 5.2.2 UE list------------------------------------20 5.2.3 MAC xface----------------------------------21 5.3 Functions------------------------------------21 5.3.1 eNB dlsch ulsch scheduler()----------------21 5.3.2 schedule ulsch rnti()----------------------22 5.3.3 ulsch scheduler pre processor()------------22 5.4 Scheduling procedure-------------------------22 6 Implementation of Algorithm Using OAI-SIM------27 6.1 Logical entities of the testbed--------------27 6.2 Implementation of the scheduler--------------28 6.2.1 Data structures and variables--------------29 6.2.2 Functions----------------------------------31 6.3 Implementation of the MEC server-------------32 6.3.1 Data structures and variables--------------32 6.3.2 Functions----------------------------------33 6.4 Scheduling procedure-------------------------35 7 Performance Evaluation-------------------------37 7.1 Simulation parameters------------------------37 7.2 Scenario and OSD-----------------------------38 7.3 Simulation results---------------------------39 8 Conclusion-------------------------------------43

    [1] 3GPP, \Ts 22.368 v12. 2.0 service requirements for machine-type communications
    (mtc)," 2013.
    [2] V. Gazis, \A survey of standards for machine-to-machine and the internet of things,"
    IEEE Communications Surveys Tutorials, vol. 19, pp. 482{511, Firstquarter 2017.
    [3] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani, M. Imran, and
    M. Guizani, \Internet of things architecture: Recent advances, taxonomy, require-
    ments, and open challenges," IEEE wireless communications, vol. 24, no. 3, pp. 10{16,
    2017.
    [4] S. Li, L. Da Xu, and S. Zhao, \5g internet of things: A survey," Journal of Industrial
    Information Integration, 2018.
    [5] C. Yu, L. Yu, Y. Wu, Y. He, and Q. Lu, \Uplink scheduling and link adaptation for
    narrowband internet of things systems," IEEE Access, vol. 5, pp. 1724{1734, 2017.
    [6] T. Qiu, R. Qiao, and D. O. Wu, \Eabs: An event-aware backpressure scheduling
    scheme for emergency internet of things," IEEE Transactions on Mobile Computing,
    no. 1, pp. 72{84, 2018.
    [7] B. Afzal, S. A. Alvi, G. A. Shah, and W. Mahmood, \Energy ecient context aware
    trac scheduling for iot applications," Ad Hoc Networks, vol. 62, pp. 101{115, 2017.
    [8] M. Kalil, A. Shami, and A. Al-Dweik, \Qos-aware power-ecient scheduler for lte
    uplink," IEEE Transactions on Mobile Computing, vol. 14, no. 8, pp. 1672{1685,
    2015.
    44
    [9] S. Abdullah and K. Yang, \An energy-ecient message scheduling algorithm in in-
    ternet of things environment," in 2013 9th International Wireless Communications
    and Mobile Computing Conference (IWCMC), pp. 311{316, July 2013.
    [10] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia, \Trac
    aware scheduling algorithm for reliable low-power multi-hop ieee 802.15.4e networks,"
    in 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio
    Communications - (PIMRC), pp. 327{332, Sept 2012.
    [11] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler, \Decentral-
    ized trac aware scheduling for multi-hop low power lossy networks in the internet
    of things," in 2013 IEEE 14th International Symposium on "A World of Wireless,
    Mobile and Multimedia Networks" (WoWMoM), pp. 1{6, June 2013.
    [12] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, \On multi-
    access edge computing: A survey of the emerging 5g network edge cloud architec-
    ture and orchestration," IEEE Communications Surveys & Tutorials, vol. 19, no. 3,
    pp. 1657{1681, 2017.
    [13] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, \Mobile edge com-
    puting|a key technology towards 5g," ETSI white paper, vol. 11, no. 11, pp. 1{16,
    2015.
    [14] J. O. Fajardo, I. Taboada, and F. Liberal, \Radio-aware service-level scheduling to
    minimize downlink trac delay through mobile edge computing," in International
    Conference on Mobile Networks and Management, pp. 121{134, Springer, 2015.
    [15] S. Sardellitti, G. Scutari, and S. Barbarossa, \Joint optimization of radio and com-
    putational resources for multicell mobile-edge computing," IEEE Transactions on
    Signal and Information Processing over Networks, vol. 1, no. 2, pp. 89{103, 2015.
    [16] P. Di Lorenzo, S. Barbarossa, and S. Sardellitti, \Joint optimization of radio resources
    and code partitioning in mobile edge computing," arXiv preprint arXiv:1307.3835,
    2013.
    45
    [17] D. Dechene and A. Shami, \Energy-aware resource allocation strategies for lte up-
    link with synchronous harq constraints," IEEE Transactions on Mobile Computing,
    vol. 13, pp. 422{433, Feb 2014.
    [18] T.-P. Low, M.-O. Pun, Y. Hong, and C.-C. Kuo, \Optimized opportunistic multicast
    scheduling (oms) over wireless cellular networks," IEEE Transactions on Wireless
    Communications, vol. 9, pp. 791{801, February 2010.
    [19] T. ETSI, \136 213 v11. 3.0 (3gpp ts 36.213 version 11.3. 0 release 11)," LTE.,(Jul.
    2013), vol. 178.
    [20] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, \A close
    examination of performance and power characteristics of 4g lte networks," pp. 225{
    238, 2012.
    [21] 3GPP TR 36.931, LTE;Evolved Universal Terrestrial Radio Access (E-UTRA);Radio
    Frequency (RF) requirements for LTE Pico Node B (Release 9), v9.0.0 ed., May 2011.
    [22] A. Hafsaoui, N. Nikaein, and L. Wang, \Openairinterface trac generator (otg): A
    realistic trac generation tool for emerging application scenarios," in 2012 IEEE
    20th International Symposium on Modeling, Analysis and Simulation of Computer
    and Telecommunication Systems, pp. 492{494, Aug 2012.

    無法下載圖示 全文公開日期 2023/08/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE