研究生: |
黃科志 Huang, Ker-Jer |
---|---|
論文名稱: |
渦漩調控式微混合器之混合機制之研究 Flow Mixing Mechanism in A Vortex-Modulation Grooved Micromixer |
指導教授: |
楊鏡堂
Yang, Jing-Tang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 166 |
中文關鍵詞: | 田口工程品質方法 、鯡魚骨式微混合器 、渦漩調控式 、商用軟體 |
外文關鍵詞: | Taguchi method, Staggered herringbone micromixer, Vortex-Modulation, CFD-ACE+ |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在發展出一種高效率的微混合器。首先以田口工程品質方法詳細的模擬分析鯡魚骨式微混合器,模擬結果顯示鯡魚骨微混合器的主要幾何參數,在本文所選擇的數值範圍內,對混合效能的影響程度依序為
溝槽的深度比~不對稱性 > 溝槽夾角 > 上下游寬度比,
在深入的了解鯡魚骨式微混合器的流場型態後,歸納出幾何參數先影響溝槽內的流量,進而透過流量影響微混合器的效能。著名的鯡魚骨式微混合器的基本流場型態為橢圓型特性,因雙曲線型流場的混合效能較橢圓型為高,本文主要方向乃定位於設計一種能產生雙曲線型的“渦漩調控式”微混合器。研究方法首先採用商用軟體CFD-ACE+,配合流體力學的理論,設計出渦漩調控式微混合器的幾何形狀;其次,設計微機電的製程技術製作出微混合器;最後,使用流體實驗方法來驗証微混合器的混合效能。
從流場模擬獲得以下五點結論:第一,網格的尺寸對流場分析有相當大的影響,網格的尺寸最好在5 □m以下,其所產生的誤差才在可接受的範圍;第二,格網的夾角對流場的影響則可忽略不計,但網格與流速向量間的夾角對濃度場的影響很大;第三,鯡魚骨式微混合器溝槽的幾何參數是影響溝槽內的流量的重點,而流量的高低則可決定混合的好壞。第四,渦漩調控式微混合器如預期的出現單一渦漩、單一渦漩加上一個鞍點,和兩個渦漩的流場結構在交替的變換,且溝槽中的流量和壓力都呈現週期性的變化;第五,渦漩調控式微混合器的混合性能,在廣泛的雷諾數範圍內(0.01~100),較鯡魚骨式微混合器為佳或相當。
本研究在微混合器的製程中,採用SU-8 光阻黃光微影、電鑄模仁和聚二甲基矽氧烷翻製成型再接合的製程,此製程遠較一般的SU-8 光阻黃光微影後即做聚二甲基矽氧烷翻模製程因難,但其優點是電鑄的模仁不會損壞,且可做為熱壓或射出感型的模仁使用。且本研究所製作之微混合器元件,在量測儀器檢測過後,尺寸誤差僅數微米左右,且微混合器元件經過極小心的封裝,通過測漏無虞後才進行實驗。
為詳加驗證實驗結果,本研究共使用顏料、螢光染料和微粒子三種物質觀測方法。首先將顏料、螢光染料和微粒子加入流體中;其次觀測流場的顏色、螢光和微粒子的分佈,以做為流體濃度場的依據,而此三種不同物質觀測實驗的濃度場結果,和模擬所得結果相符。其中,螢光實驗可降低背景光的影響,因而有較高的可靠性,其實驗結果顯示在雷諾數為1時,混合長度稍大於8 mm。而微粒子不僅能提供濃度場的定性特性,更有可能發展成可定量分佈的方法,且微粒子尚具備提供流場的速度場的潛力可能。
本研究所發展出一種新的渦漩調控式微混合器,經模擬分析、製作和流體實驗,驗證其混合效果優於傳統鯡魚骨式微混合器,實驗結果顯示其性能優良,並與電腦模擬結果相符。本研究之結果將有助於了解雙曲線型的流場現象,以及計算流體力學軟體應用於微混合現象的模擬分析能力和限制,並對整合微混合器於晶片實驗室的製程有一定程度的幫助。
Adeosun, J. T. and Lawal, A., 2005, “Mass transfer enhancement in microchannel reactors by reorientation of fluid interfaces and stretching,” Sens. Actuators B, Vol. 110, pp. 101-111.
Adrian, R. J., 1991, “Particle-imaging techniques for experimental fluid mechanics,” Ann. Rev. Fluid Mech., Vol. 23, pp. 261-304.
Ahn, C. H., Choi, J. W., Beaucage, G., and Nevin, J. H., 2004, “Disposable smart lab on a chip for point-of-care clinical diagnostics,” Proceedings of the IEEE, Vol. 92, pp. 154-173.
Aref, H., 2002, “The development of the chaotic advection,” Phys. Fluids., Vol. 14, No. 4, pp. 1315-1325.
Aref, H., 1984, “Stirring by chaotic advection,” J. Fluid Mech., Vol. 143, No. 1, pp. 1315-1325.
Aubin, J., Fletcher, D. F., Bertrand, J. and Xuereb, C., 2003, “Characterization of the mixing quality in micromixers,” Chem. Eng. Technol., Vol. 26, No. 12, pp. 1262-1270.
Aubin, J., Fletcher, D. F., and Xuereb, C., 2005, “Design of micromixers using CFD modelling,” Chem. Eng. Sci., Vol. 60, pp. 2503-2516.
Beard, D. A., 2001, “Taylor dispersion of a solute in a microfluidic channel,” J. Appl. Phys., Vol. 89, pp. 4667-4669.
Beebe, D., Adrian, R. J., Olsen, M. G., Stremler, M. A., Aref, H., and Jo, B. H., 2001, “Passive mixing in microchannels: Fabrication and flow experiments,” Mec. Ind., Vol. 2, pp. 343-348.
Bynum, M. A. and Gordon, G. B., 2004, “Hybridization enhancement using microfluidic planetary centrifugal mixing,” Anal. Chem., Vol. 76, pp. 7039- 7044.
Johnson, B. K. and Prud’homme, R. K., 2003, “Chemical processing and micromixing in confined impinging jets,” AIChE J., Vol. 49, No. 9, pp. 2264-2282.
Chang, S. and Cho, Y. H., 2005, “Static micromixers using alternating whirls and lamination,” J. Micromech. Microeng., Vol. 15, pp. 1397-1405.
Chow, A. W., 2002, “Lab-on-a-chip: Opportunities for chemical engineering,” AIChE J., Vol. 48, No. 8, pp. 1590-1595.
Chung, Y. C., Hsu, Y. L., Jen, C. P., Lu, M. C., and Lin, U. C., 2004, “Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber,” Lab Chip, Vol. 4, pp. 70-77.
Dombrowski, N., Foumeny, E. A., Ookawara, S., and Riza, A., 2001, “Influence of Reynolds number on the entry length and pressure drop for laminar pipe flow,” Canadian Journal of Chemical Engineering, Vol. 71, No. 3, pp. 472-476.
Einstein, 1956, Investigations on the Theory of Brownian Movement, Dover Publications, New York.
Go, J. S. and Cho, Y. H., 1999, “Experimental evaluation of anodic bonding process based on the Taguchi analysis of interfacial fracture toughness,” Sensors and Actuators, Vol. 73, pp. 52-57.
Hessel, V., Hardt, S., Löwe, H., and Schönfeld, F., 2003, “Laminar mixing in different interdigital micromixers: I. experimental characterization,” AIChE J., Vol. 49, No. 3, pp. 566-577.
Hardt, S. and Schönfeld, F., 2003, “Laminar mixing in different interdigital micromixers: II. Numerical Simulations,” AIChE J., Vol. 49, No. 3, pp. 578-584.
Hsieh, S. S., Lin, C. Y., Huang, C. F., and Tsai, H. H., 2004, “Liquid flow in a micro-channel,” J. Micromech. Microeng. Vol. 14, pp. 436-445.
Hwang, W. R., Jun, H. S., and Kwon, T. H., 2002, “Experiments on chaotic mixing in a screw channel flow,” AICHE J., Vol. 48, pp. 1621-1630.
Hong, C. C., Choi, J. W., and Ahn, C. H., 2004, “A novel in-plane passive microfluidic mixer with modified Tesla structures,” Lab Chip, Vol. 4, pp. 109-113.
Ismagilov, R. F., Stroock, A. D., Kenis, P. J. A., Whitesidesa, G., and Stonea, H. A., 2000, “Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels,” Applied Physics Letters, Vol. 76, No. 17, pp. 2376-2378.
Jen, C. P., Wu, C. Y., Lin, Y. C., and Wu, C. Y., 2003, “Design and simulation of the micromixer with chaotic advection in twisted microchannels,” Lab Chip, Vol. 3, pp.77-81.
Jeon, M. K., Kim, J. H., Noh, J., Kim, S. H., Park, H. G., and Woo, S. I., 2005, “Design and characterization of a passive recycle micromixer,” J. Micromech. Microeng., Vol. 15, pp. 346-350.
Jiang, F., Drese, K. S., Hardt, S., Küpper, M., and Schönfeld, F., 2004, “Helical flows and chaotic mixing in curved micro channels,” AIChE J., Vol. 50, No. 9, pp. 771-777.
Jiguet, S., Bertsch, A., Hofmann, H., and Renaud, P., 2005, ”Conductive SU8 photoresist for microfabrication,” Adv. Funct. Mater., Vol. 15, No. 9, pp. 1511-1516.
Jo, B. H., Lerberghe, L. M. V., Motsegood, K. M., and Beebe, D. J., 2000, “Three dimensional micro-channel fabrication in polydimethysiloxane (PDMS) elastomer,” J. Microelectromech. Sys., Vol. 9, No. 1, pp. 76-81.
Johnson, T. J. and Locascio, L. E., 2002, “Characterization and optimization of slanted well designs for microfluidic mixing under electroosmotic flow,” Lab. Chip, Vol. 2, pp. 135-140.
Johnson, T. J., Ross, D., and Locascio, L. E., 2002, “Rapid microfluidic mixing,” Anal. Chem., Vol. 74, No. 1, pp. 45-51.
Kamholz, A. E., Weigl, B. H., Finlayson, B. A., and Yager, P., 1999, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem., Vol. 71, pp. 5340-5347.
Kockmann, N., Föll, C., and Woias, P., 2003, “Flow regimes and mass transfer characteristics in static micro mixers,” Proceeding of SPIE, Vol. 4982, pp. 319-329.
Kamholz, A. E., Schilling, E. A., and Yager P., 2001, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophysical Journal, Vol. 80, pp. 1967–1972.
Kamholz, A. E. and Yager, P., 2001, “Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels,” Biophysical Journal, Vol. 80, pp. 155-160.
Kamholz, A. E. and Yager, P., 2002, “Molecular diffusive scaling laws in pressure-driven microfluidic channels: deviation from one-dimensional Einstein approximation,” Sensors and Actuators B, Vol. 82, pp. 117-121.
Kim, D. S., Lee, S. W., Kwon, T. H., and Lee, S. S., 2004, “A barrier embedded chaotic micromixer,” J. Micromech. Microeng., Vol. 14, pp. 798-805.
Kim, D. S., Lee, I. H., Kwon, T. H., and Cho, D. W., 2004, “A barrier embedded Kenics micromixer,” J. Micromech. Microeng., Vol. 14, pp. 1294-1301.
Kim, D. S., Lee, S. H., Kwon, T. H., and Ahn, C. H., 2005, ”A serpentine laminating micromixer combining splitting/recombination and advection,” Lab Chip, Vol. 5, pp. 739-747.
Koch, M., Chatelain, D., Evans, A. G. R., and Brunnschweiler A., 1998, “Two simple micromixer based on silicon,” J. Micromech. Microeng., Vol. 8, pp. 123-126.
Li, C. and Chen, T., 2005, “Simulation and optimization of chaotic micromixer using lattice Boltzmann method,” Sens. Actuators B, Vol. 106, pp. 871-877.
Lin, C. H., Tsai, C. H., and Fu, L. M., 2005, “A rapid three- dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions,” J. Micromech. Microeng., Vol. 15, pp. 935-943.
Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Aref, R. A. H., and Beebe, D. J., 2002, “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst., Vol. 9, No. 2, pp. 190-197.
Manz, A., Graber, N., and Widmer, H. M., 1990, “Miniaturized total chemical analysis system: A noval concept for chemical sensing,” Sens. Actuators B, Vol. 1, pp. 244-248.
Mengeaud, V., Josserand, J., and Girault, H. H., 2002, “Mixing processes in a zigzag microchannel: finite element simulations and optical study,” Anal. Chem, Vol. 74, No. 16, pp. 4279-4286.
Meinhart, C. D., Wereley, S. T., and Santiago, J. G., 1999, “PIV measurements of a microchannel flow,” Experiments in Fluids, Vol. 27, pp. 414–419.
Meinhart, C. D., Wereley, S. T., and Gray, M. H. B., 2000, “Volume illumination for two-dimensional particle image velocimetry,” Meas. Sci. Technol., Vol. 11, pp. 809-814.
Miyazaki, K., Chen, G. , Yamamoto, F. , Ohta, J. I., Murai, Y., and Horii, K., 1999, “PIV measurement of particle motion in spiral gas-solid two-phase flow,” Experimental Thermal and Fluid Science, Vol. 19, pp. 194-204.
Mounier, E. and Provence, M., 2003, “Technologies and markets trends in biochips and microfluidic chips,” Yole Development White Paper.
Ng, J. M. K., Gitlin, I., Stroock, A. D., and Whitesides, G. M., 2002, “Components for integrated poly(dimethylsiloxane) microfluidic system,” Electrophoresis, Vol. 23, pp. 3461-3473.
Nguyen, N. T. and Wu, Z., “Micromixers-a review, 2005,” J. Micromech. Microeng. Vol. 15, pp. 1-16.
Oak, J., Pence, D. V., and Liburdy, J. A., 2004, “Flow development of co-flowing streams in rectangular micro-channels,” Microscale Thermophysical Engineering, Vol. 8, pp. 111-124.
Ottino, J. M., 1989, The Kinematics of Mixing, Cambridge University Press, Cambridge, U. K.
Patankar, S. V., 1977, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., pp. 108.
Raynal, F., Plaza, F., Beuf, A., and Carrière, P., 2004, ”Study of a chaotic mixing system for DNA chip hybridization chambers,” Phys. Fluids, Vol. 16, No. 9, pp. 63-66.
Santiago, J. G., Wereley, S. T., Meinhart, C. D., Beebe, D. J., and Adrian, R. J., 1998, “A particle image velocimetry system for microfluidics,” Experiments in Fluids, Vol. 25, pp. 316–319.
Sato, K., Yamanaka, M., Hagino, T., Tokeshi., M., Kimura, H., and Kitamori, T., 2004, “Microchip-based enzyme-linked immunosor- bent assay (microELISA) system with thermal lens detection,” Lab Chip, Vol. 4, pp. 570-575.
Sato, H., Ito, S., Tajima, K., Orimoto, N., and Shoji, S., 2005, “PDMS microchannels with slanted grooves embedded in three walls to realize efficient spiral flow,” Sens. Actuators A, Vol. 119, pp. 365 -371.
Schönfeld, F. and Hardt, S., 2004, “Simulation of helical flows in microchannels,” AIChE J., Vol. 50, No. 4, pp. 771-777.
Schönfeld, F., Hessel, V., and Hofmann C., 2004, “An optimized split-and recombine micro-mixer with uniform chaotic mixing,” Lab Chip, Vol. 4, pp. 65-69.
Serra, C., Sary, N., Schlatter, G., Hadziioannou, G., and Hessel, V., 2005, “Numerical simulation of polymerization in interdigital multilaminiation micromixers,” Lab Chip, Vol. 5, pp. 966-973.
Shah, R. K. and London, A. L., 1978, Laminar Flow Forced Convection in Ducts: A Source Book for Compact Heat Exchanger Analytical Data, New York, Academic Press, pp. 165.
Srinivasan, V., Pamula, V. K., and Fair, R. B., 2004, “An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids,” Lab Chip, Vol. 4, pp. 310-315.
Stroock, A. D., Dertinger, S. K., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M., 2002, “Chaotic mixer for microchannels,” Science, Vol. 295, pp. 647–651.
Stroock, A. D., Dertinger, S. K., Whitesides, G. M., and Ajdari, A., 2002, “Patterning flows using grooved surfaces,” Anal. Chem., Vol. 74, pp. 5306–5312.
Stroock, A. D., Dertinger, S. K., Ajdari, A., Mezic, I., Stone, H. A., and Whitesides, G. M., “Laminar mixing apparatus and methods,” Patent No. WO 03/011443 A2.
Taylor, G., 1953, Proc. R. Soc. London, Ser. A 219, pp.186.
Tsaur, J. J., Du, C. H., and Lee C., 2001, “Investigation of TMAH for front-side bulk micromachining process from manufacturing aspect,” Sensors and Actuators, Vol. 92, pp. 52-57.
Tüdős, A. J., Besselink, G. A. J., and Schasfoort, R. B. M., 2001, “Trends in miniaturized total analysis system for point-of-care testing in clinical chemistry,” Lab Chip, Vol. 1, pp. 83-95.
Veenstra, T. T., Lammerink, T., Elwenspoek, M., and van den Berg, A., 1999, “A characterization method for a new diffusion mixer application in micro flow injection analysis system,” J. Micromech. Microeng., Vol. 9, pp. 199-202.
Wang, H., Iovenitti, P., Harvey, E., and Masood, S., 2003, “Numerical investigation of mixing in microchannels with patterned grooves,” J. Micromech. Microeng ., Vol. 13, pp. 801-808.
Wang, H., Iovenitti, P., Harvey, E., and Masood, S., 2003, “Passive mixing in microchannels by applying geometric variations,” Proceeding of SPIE, Vol. 4982, pp. 282-288.
White, F. M., 1991, Viscous Fluid Flow, McGraw-Hill, Inc. Press, pp. 120.
Xia, H. M., Wan, S. Y. M., Shu, C., and Chew, Y. T., 2005, “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers,” Lab Chip, Vol. 5, pp. 748-755.
Xia, Y. and Whitesides, G., 1998, “Soft lithography,” Angew Chem. Int. Ed., Vol. 37, pp. 550-575.