研究生: |
林揚閔 Yang-Miin Lin |
---|---|
論文名稱: |
雙金屬錯合物的研究 The Studies of Metal-Metal Complexes |
指導教授: |
蔡易州
Yi-Chou Tsai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 500 |
中文關鍵詞: | 雙金屬錯合物 、四鍵 、雙鉬金屬錯合物 、雙鋅金屬錯合物 、雙鎘金屬錯合物 、雙錳金屬錯合物 、多重鍵 |
外文關鍵詞: | dimetal complexes, quadruple bond, di-molybdenum complexes, di-cadmium complexes, di-zinc compleses, di-manganese complexes, multiply bonded |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本論文在於合成並研究數個新穎的雙金屬錯合物,包括雙鉬多重鍵金屬錯合物、雙錳金屬錯合物、雙鋅及雙鎘錯合物,並概分為三部份於本論文中報告,其中雙鉬多重鍵錯合物的部份研究成果已發表於美國化學會期刊中*。
*. Tsai, Y.-C.; Lin, Y.-M.; Yu, J.-S. K.; Hwang, J.-K. J. Am. Chem. Soc. 2006, 128, 13980-13981.
在第一部份的雙鉬多重鍵錯合物研究中,使用{Me2Si[NLi(Dipp)]2}2 (1) 及 {PhB[NLi(Dipp)]2}2 (4) 這兩個配基,來和MoCl3(THF)3反應時我們可以得到雙鉬三鍵錯合物syn-1,2-Mo2Cl2[□-□2-Me2Si(NDipp)2]2 (2) 及syn-1,2-Mo2Cl2[□-□2-PhB (NDipp)2]2 (5),兩者皆為順式相蝕類乙烷的結構。進一步將化合物 (2) 以Na/Hg還原時,可得新型四配位雙鉬四鍵錯合物Mo2[□-□2-Me2Si(NDipp)2]2 (3),我們以Raman光譜、UV光譜來鑑定其四鍵的存在,並以DFT理論計算來支持其四鍵的鍵結中,並非是氫原子,而是真正的低配位雙鉬四鍵錯合物。
當配基 tBuP(NDipp)2(□-Li)2(ether)2 (7) 和Mo2Cl6(THF)3反應時,配基氧化失去了第三丁基,將三價鉬還原成了二價鉬,直接得到高產率的雙鉬四鍵錯合物 {(□-Li)(THF)}{Mo2(□-Cl)Cl2[□-□2-P(NDipp)2]2} (8)。相似的,若我們直接以新鮮的二價鉬和負一價的配基{Li[□2-CH(NDipp)2](OEt2)2} (9) 反應,也可得結構與化合物 (8) 相似的 {Li(THF)4}{Mo2(□-Cl)Cl2[□-□2-C(NDipp)2]2} (10) 雙鉬四鍵錯合物。
發現以含有DME的鉬三價起始物 [MoCl3DME] 和 (1)•DME反應時,出乎意料的得到了和化合物 (2) 配基不相同的雙鉬錯合物 syn-1,2-Mo2(OMe)2[□-□2-SiMe2(NDipp)2]2 (11) ,化合物 (11) 上出現了兩個甲氧基的配位,我們根據反應的條件及化合物 (3) 的成果,推測此反應可能是經過一個化合物 (3) 的中間體,再將DME還原成乙烯,進而產生化合物 (11)。
本論文的第二部份為雙錳錯合物的研究,利用化合物 (1) 和MnCl2反應,可得到雙核的錯合物Mn2[□-□2-SiMe2(NDipp)2]2 (12) 及單核的錯合物 {Li(THF)4}{Mn[□2-SiMe2(NDipp)2]2} (13)。加入一當量的KC8還原化合物 (12) 時,得到還原一個電子的產物[K(□6-18-crown-6)(THF)2][Mn2(□-□2-SiMe2(NDipp)2)](THF)2 (14),與化合物 (12) 的結構大為不同,化合物 (14) 發生了結構上的變化,並且產生了雙錳鍵結。若加入更多量的KC8來還原化合物 (12) 時,產生了還原兩個電子的產物 [K2{Mn[□2-SiMe2(NDipp)2]}2] (15),化合物 (15) 在結構上產生了更大的變化,不但產生了雙錳鍵結,配基也由架橋形式變成了螯合模式。以上一系列的三個雙錳錯合物 (12)、(14) 及 (15) 皆為反鐵磁的化合物,在室溫下分別具有四個、五個及四個未成對電子,並且在結構上發生了有趣的變化。
研究內容的第三部份為雙鋅及雙鎘錯合物。ZnBr2和化合物 (1),形成雙鋅錯合物Zn2[□-□2-SiMe2(NDipp)2]2 (16)。雙鋅錯合物的還原和雙錳錯合物的還原結果相似,若加入過量的KC8來還原 (16),分別可得到 {K(□6-18-crown-6)(THF)2}2{{Zn[□2-SiMe2(NDipp)2]}2} (17) 及 [K2{Zn[□2-SiMe2(NDipp)2]}2] (18),雙鋅錯合物 (17) 及 (18) 在主結構上完全相似,差異僅在陽離子的位置,他們在結構上一樣產生了雙鋅鍵結,配基也由架橋形式變成了螫合模式。可惜我們無法得到只將化合物 (16) 還原一個電子的產物,因此得進一步的仰賴理論計算,來解釋其有趣的反應機構。另外,CdCl2和化合物 (1) 反應生成的淡黃色的化合物 (19),在核磁共振光譜和元素分析的支持下,推測其結構應是雙鎘錯合物Cd2[□-□2-SiMe2(NDipp)2]2 (19)。若進一步的以過量的KC8再還原 (19) 時,並沒有得到預測中的雙鎘鍵錯合物,而是無色單核的二價鎘金屬錯合物K2Cd[□2-SiMe2(NDipp)2]2 (20),推測為在合成過成中,兩個鎘金屬發生了自身氧化還原反應。
Abstract
This thesis, which is divided into three parts, aims on the studies of some new di-metal complexes. The first part is concerned with di-molybdenum multiply bonded complexes. The second part is the studies of di-manganese complexes. The third part is about di-zinc and di-cadmium complexes. The wonderful result of di-molybdenum multiply bonded complexes has been published on ‘Journal of the American Chemical Society’.*
*. Tsai, Y.-C.; Lin, Y.-M.; Yu, J.-S. K.; Hwang, J.-K. J. Am. Chem. Soc. 2006, 128, 13980-13981.
In the first part of di-molybdenum multiply bonded complexes, the reaction between the dimeric dilithio salts of {Me2Si[NLi(Dipp)]2}2 (1)、{PhB[NLi(Dipp)]2}2 (4) with monomeric MoCl3(THF)3, form triply bonded di-molybdenum complexes syn-1,2-Mo2Cl2[□-□2-Me2Si (NDipp)2]2 (2) and syn-1,2-Mo2Cl2[□-□2-PhB(NDipp)2]2 (5). Both of them were ethane-like eclipsed syn conformation. Reduction of (2) by Na/Hg afforded the new type of four coordinate di-molybdenum quadruply bonded complexes Mo2[□-□2-Me2Si(NDipp)2]2 (3). Raman spectroscopy and UV spectroscopy were used to probe the Mo-Mo quadruple bond. We are also using DFT computation to support the bonding of a quadruple bond. There is no other hydride bridged, it’s new type of low coordinate di-molybdenum complexes.
When the Mo2Cl6(THF)3 reacts with tBuP(NDipp)2(□-Li)2(ether)2 (7), we get di-molybdenum quadruply bonded complexes {(□-Li)(THF)} {Mo2(□-Cl)Cl2[□-□2-P(NDipp)2]2} (8) directly, because the ligand lose tert-butyl radical to reduce Mo3+ to Mo2+. Di-molybdenum quadruply bonded complexes {Li(THF)4}{Mo2(□-Cl)Cl2[□-□2-C(NDipp)2]2} (10), the structure like (8), also can be prepared by reacting fresh Mo2+ with {Li[□2-CH(NDipp)2](OEt2)2} (9).
If the starting material content DME, the reaction between [MoCl3DME] and (1)•DME will get triply bonded di-molybdenum complexes syn-1,2-Mo2(OMe)2[□-□2-SiMe2(NDipp)2]2 (11), different from (2). The compound (11) has two coordinate methoxy groups. According the reaction condition and the result of compound (3), we spouse it has a transition state like (3), which might reduce DME to ethylene, and afforded the corresponding (11).
The second part is the studies of di-manganese complexes. Reaction of (1) with MnCl2 will get two complexes, one is dinuclear complex Mn2[□-□2-SiMe2(NDipp)2]2 (12), the other is mononuclear complex {Li(THF)4}{Mn[□2-SiMe2(NDipp)2]2} (13). When the reduction of (12) by one equivalent KC8, the corresponding reduced product [K(□6-18-crown-6)(THF)2][Mn2(□-□2-SiMe2(NDipp)2)](THF)2 (14) is formed. The structure of (14) has been changed and formed di-manganese bond, which is different from (12). If more KC8 were used for the reaction of (12) reduction, we get a product content two potassium, [K2{Mn[□2-SiMe2 (NDipp)2]}2] (15). The structure of (15) is also changed, it formed di-manganese bond, and the bridging ligand turned to chelating position. A series of di-manganese complexes (12), (14) and (15) were all anti ferromagnetic compounds, which have 4, 5 and 4 unpaired electron at room temperature, and have interesting change on structure.
The third part of this thesis was about di-zinc and di-cadmium complexes. Di-zinc complex Zn2[□-□2-SiMe2(NDipp)2]2 (16) was produced form ZnBr2 react with (1). The result of di-zinc complex reduction was very similar with the result of di-manganese, by the reduction of excess KC8, we can get di-zinc bonded complexes {K(□6-18-crown-6)(THF)2}2{{Zn[□2-SiMe2(NDipp)2]}2} (17) or [K2{Zn[□2-SiMe2 (NDipp)2]}2] (18). The (17) and (18) were very similar on main structure, the difference is just on the position of potassium cat ion, and the bridging ligand turned to chelating position. Unfortunately, we can not get the product reduce by one equivalent electron, so we need to depend on the electronic structure computation, to explain the reaction mechanism. In the research of di-cadmium complexes, the CdCl2 react with (1) which formed light yellow compound (19). The synthesis of (19) were using the same pathway as zinc, so we propose the structure of it should be di-cadmium complexes Cd2[□-□2-SiMe2(NDipp)2]2 (19). And reduction of (19) by excess KC8 formed colorless cadmium (II) complexes K2Cd[□2-SiMe2(NDipp)2]2 (20), which might produce by the self-reduction of di-cadmium intermediate.
第一章
本章參考文獻
1. Heyduk, A. F.; Nocera, D. G. Science 2001, 293, 1639-1641.
2. May, J. A.; Stoltz, B. M. J. Am. Chem. Soc. 2002, 124, 12426-12427.
3. Yamashita, Y.; Salter, M. M.; Aoyama, K.; Kobayashi, S. Angew. Chem. Int. Ed. 2006, 45, 3816-3819.
4. Catalina, E. L.; Cummins, C. C. Science. 1995, 268, 861-863.
5. Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. Science 1964, 145, 1305-1307.
6. Lawton, D.; Mason, R. J. Am. Chem. Soc. 1965, 87, 921-922.
7. Cotton, F. A.; Murillo, C. A.; Walton, R. A., Ed. Multiple Bonds Between Metal Atoms; 3rd ed. Springer Science and Business Media, Inc.: New York, 2005.
8. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science 2005, 310, 844-847.
9. Frenking. G. Science 2005, 310, 796-797.
10. (a) Chisholm, M. H.; Cotton, F. A. Acc. Chem. Res. 1978, 11, 356-362. (b) Chisholm, M. H. Acc. Chem. Res. 1990, 23, 419-425.
11. Cotton, F. A.; Haefner, S. C.; Sattelberger, A. P. Inorg. Chem. 1996, 35, 7350-7357. (b) Cotton, F. A.; Feng, X.; Matusz, M.; Poli, R. J. Am. Chem. Soc. 1988, 110, 7077-7083.
12. Chai, J.; Zhu, H.; Ma, Q.; Schmidt, H. G.; Noltemeyer, M.; Roesky, H. W. Eur. J. Inorg. Chem. 2004, 24, 4807-4811.
13. Manke, D. R.; Loh, Z. H.; Nocera, D. G. Inorg. Chem. 2004, 43, 3618-3624.
第二章
本章參考文獻
1. Lawton, D.; Mason, R. J. Am. Chem. Soc. 1965, 87, 921-922.
2. Cotton, F. A.; Murillo, C. A.; Walton, R. A., Ed. Multiple Bonds Between Metal Atoms; 3rd ed. Springer Science and Business Media, Inc.: New York, 2005.
3. Chisholm, M. H., Ed. Early Transition Clusters with □-Donor Ligands; VCH Publishers: New York, 1995; p167.
4. (a) Chisholm, M. H.; Reichert, W. W. J. Am. Chem. Soc. 1974, 96, 1249–1251. (b) Chisholm, M. H.; Cotton, F. A.; Frenz, B. A.; Reichert, W. W.; Shive, L. W.; Stults, B. R. J. Am. Chem. Soc. 1976, 98, 4469–4476.
5. Manke, D. R.; Loh, Z. H.; Nocera, D. G. Inorg. Chem. 2004, 43, 3618-3624.
6. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science 2005, 310, 844-847.
7. Stanciu, C.; Olmstead, M. M.; Phillips, A. D.; Stender, M.; Power, P. P. Eur. J. Inorg. Chem. 2003, 23, 3495-3500.
8. Schiemenz, B.; Power, P. P.; Angew. Chem. Int. Ed. Engl. 1996, 35, 2150-2152.
9. (a) Wright, R. J.; Phillips, A. D.; Hardman, N. J. ; Power, P. P. J. Am. Chem. Soc. 2002, 124, 8538-8539. (b) Wright, R. J.; Phillips, A. D.; Hino, S.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 4794-4799.
10. Pu, L.; Phillips, A. D.; Richards, A. F.; Stender, M.; Simons, R. S.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 11626-11636.
11. (a) Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2002, 124, 5930-5931. (b) Hino, S.; Olmstead, M.; Phillips, A. D.; Wright, R. J.; Power P. P. Inorg. Chem., 2004, 43, 7346-7352.
12. (a) Twamley, B.; Haubrich, S. T.; Power, P. P. Adv. Organomet. Chem. 1999, 44, 1. (b) Clyburne, J. A. C.; McMullen, N. Coord. Chem. Rev. 2000, 210, 73-99.
13. Frenking. G. Science 2005, 310, 796-793.
14. Ryan, T. R.; McCinnis, R. N.; McCarley, R. E. J. Am. Chem. Soc. 1978, 100, 7900-7902.
15. Kobayashi, S.; Yamashita, Y.; Salter, M. M.; Aoyama, K. Angew. Chem. Int. Ed. 2006, 45, 3816-3819.
16. Stoffelbach, F.; Saurenz, Dirk.; Poli, R. Eur. J. Inorg. Chem. 2001, 21, 2699-2703.
17. Gilbert, T. M.; Landes, A. M.; Rogers, R. D. Inorg. Chem. 1992, 31, 3438-3444.
18. Cotton, F. A.; Su, J. Inorg. Chim. Acta. 1996, 251, 101-104.
19. Hill, M. S.; Hitchcock, P. B. Organometallics 2002, 21, 3258-3262.
20. Chisholm, M. H.; Cotton, F. A.; Extine, M. W.; Murillo, C. A. Inorg. Chem. 1978, 17, 2338-2340.
21. (a) Manke, D. R.; Loh, Z.-H.; Nocera, D. G. Inorg. Chem. 2004, 43, 3618–3624. (b) Su, K.; Tilley, T. D. Chem. Mater. 1997, 9, 588–595. (c) Blatchford, T. P.; Chisholm, M. H.; Huffman, J. C. Inorg. Chem. 1987, 26, 1920–1925. (d) Armstrong, W. H.; Bonitatebus, P. J.; Kristallogr, J. Z. New Cryst. Struct. 1999, 214, 241–242.
22. (a) Akiyama, M.; Chisholm, M. H.; Cotton, F. A.; Extine, M. W.; Murillo, C. A. Inorg. Chem. 1977, 16, 2407-2411. (b) Schulz, H.; Folting, K.; Huffman, J. C.; Streib, W. E.; Chisholm, M. H. Inorg. Chem. 1993, 32, 6056–6066.
23. Albright, T. A.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 7736–7737.
24. Chisholm, M. H.; Cotton, F. A. Acc. Chem. Res. 1978, 11, 356-362.
25. (a) Cotton, F. A.; John, M. H.; Silva, D. D. Inorg. Chim. Acta 1995, 234, 115-125. (b) Cotton, F. A.; Lee M. D.; Shang, Maoyu; Yao, Z. Inorg. Chim. Acta 1994, 215, 103-107.
26. Cotton, F. A.; Daniels, L. M.; Hillard, E. A.; Murillo, C. A. Inorg. Chem. 2002, 41, 2466-2470.
27. (a) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys. 1998, 109, 8218–8224. (b) Casida, M. E.; Jamorski, C.; Casida, K. C.; Salahub, D. R. J. Chem. Phys. 1998, 108, 4439–4449.
28. (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098-3122. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-851. (c) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-211.
29. Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899-926 and references therein.
30. Wang, Y.; Quillian, B.; Wei, P.; Wang, H.; Yang, X. J.; Xie, Y.; King, R. B.; Schleyer, P. v. R.; Schaefer, H. F.; Robinson, G. H. J. Am. Chem. Soc. 2005, 127, 11944-11945.
31. Nocera, D. G. Acc. Chem. Res. 1995, 28, 209-217.
32. Chivers, T.; Fedorchuk, C.; Parvez, M. Inorg. Chem. 2004, 43, 2643-2653.
33. Schulz, S.; Bauer, T.; Nieger, M. Zeit. Anorg. Allg. Chem. 2001, 627, 266-270.
34. Cole, M. L.; Davies, A. J.; Jones, J.; Junk, P. C. J. Organomet. Chem. 2004, 689, 3093–3107
35. Tsai, Y.-C.; Lin, Y.-M.; Yu, J.-S. K.; Hwang, J.-K. J. Am. Chem. Soc. 2006, 128, 13980-13981.
第三章
本章參考文獻
1. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science 2005, 310, 844-847.
2. Frenking. G. Science 2005, 310, 796-797.
3. Stanciu, C.; Olmstead, M. M.; Phillips, A. D.; Stender, M.; Power, P. P. Eur. J. Inorg. Chem. 2003, 23, 3495-3500.
4. Schiemenz, B.; Power, P. P.; Angew. Chem. Int. Ed. Engl. 1996, 35, 2150-2152.
5. (a) Wright, R. J.; Phillips, A. D.; Hardman, N. J. ; Power, P. P. J. Am. Chem. Soc. 2002, 124, 8538-8539. (b) Wright, R. J.; Phillips, A. D.; Hino, S.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 4794-4799.
6. Pu, L.; Phillips, A. D.; Richards, A. F.; Stender, M.; Simons, R. S.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 11626-11636.
7. (a) Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2002, 124, 5930-5931. (b) Hino, S.; Olmstead, M.; Phillips, A. D.; Wright, R. J.; Power P. P. Inorg. Chem., 2004, 43, 7346-7352.
8. (a) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Inorg. Chem. 2001, 40, 5322-5323. (b) Adams, R. D.; Kwon, O.-S.; Smith, M. D. Inorg. Chem. 2002,41, 5525-5529.
9. (a) Kim, J.; Rees, D. C. Nature 1992, 360, 553-560. (b) Howard, J. B.; Rees, D. C. Chem. Rev. 1996, 96, 2965-2982. (c) Burgess, B. K.; Lowe, D. J. Chem. Rev. 1996, 96, 2983-3011.
10. Roundhill, D. M. Photochemistry and Photophysics of Metal omplexes; Plenum Press: New York, 1994.
11. Collier, C. P.; Jeppesen, J. O.; Luo, Y.; Perkins, J.; Wong, E. W.; Heath, J. R.; Stoddart, J. F. J. Am. Chem. Soc. 2001, 123, 12632-12641.
12. Schwab, P. F. H.; Levin, M. D.; Michl, J. Chem. Rev. 1999, 99, 1863-1933.
13. Ellison, J. J.; Power, P. P.; Shoner, S. C. J. Am. Chem. Soc. 1989, 111, 8044-8046.
14. Wehmschulte, R. J.; Power, P. P. Organometallics 1995, 14, 3264-3267.
15. Panda, A.; Stender, M.; Wright, R. J.; Olmstead, M. M.; Klavins, P.; Power, P. P. Inorg. Chem. 2002, 41, 3909-3916.
16. Chai, J.; Zhu, H.; Fan, H.; Roesky, H. W.; Magull, J. Organometallics 2004, 23, 1177-1179.
17. Chai, J.; Zhu, H.; Ma, Q.; Schmidt, H. G.; Noltemeyer, M.; Roesky, H. W. Eur. J. Inorg. Chem. 2004, 24, 4807-4811.
18. Bianchi, R.; Gervasio, G.; Marabello, D. Inorg. Chem. 2000, 39, 2360-2366.
19. Chai, J.; Zhu, H.; Stuckl, A. C.; Roesky, H. W.; Magull, J.; Bencini, A.; Caneschi, A.; Gatteschi, D. J. Am. Chem. Soc. 2005, 127, 9201-9206.
20. Chai, J.; Zhu, H.; Most, K.; Roesky, H. W.; Vidovic, D.; Schmidt, H.-G.; Noltemeyer, M. Eur. J. Inorg. Chem. 2003, 4332-4337.
21. Nayak, S. K.; Rao, B. K.; Jena, P. J. Phys.: Condens. Matter 1998, 10, 10863-10878.
22. Low, P. M. N.; Tan, A. L.; Hor, T. S. A.; Wen, Y. S.; Liu, L. K. Organometallics 1996, 15, 2595-2603.
23. H. Chen, R. A. Bartlett, H. V. R. Dias, M. M. Olmstead, P. P. Power, Inorg. Chem. 1991, 30, 2487-2494.
24. Kawaguchi, H.; Matsuo, T. J. Am. Chem. Soc. 2003, 125, 14254-14255.
25. Cotton, F. A.; Hillard, E. A.; Murillo, C. A.; Wang, X. Inorg. Chem. 2003, 42, 6063-6070.
26. Miyasaka, H.; Izawa, T.; Sugiura, K.; Yamashita, M. Inorg. Chem. 2003, 42, 7683-7690.
27. Diez, R. P.; Alonso, J.A.; Matxain, J. M. Chem. Phy. Lett. 2003, 372, 82-89.
28. Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, 864-899.
29. Kohn, W.; Sham, L.J. Phys. Rev. 1965,140 , 1133-1143.
30. Smith, J. M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-Rodgers, G.; Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc. 2001, 123, 9222- 9223.
31. (a) Hardman, N. J.; Wright, R. J. ; Phillips, A. D.; Power , P. P. Angew. Chem. Int. Ed. 2002, 41, 2842-2844. (b) Pu, L.; Phillips, A. D.; Richards, A. F.; Stender, M.; Simons, R. S.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 11626-11636.
32. Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley: New York, 1985.
33. Shriver, D. F.; Atkins, P. W. Inorganic Chemistry, 3rd ed; Oxford: New York, 1999.
34. (a) Tennyson, J.; Miller, S. Spectrochimica Acta Part A, 2001, 57, 661-667. (b) Miller, S.; Tennyson, J. Chem. Soc. Rev. 1992, 21, 288.
第四章
本章參考文獻
1. Auld, D. S. BioMetals 2001, 14, 271-313.
2. Lipscomb, W. N.; Strater, N. Chem. Rev. 1996, 96, 2375-2433.
3. Wilcox, D. Chem. Rev. 1996, 96, 2435-2458
4. Strater, N.; Lipscomb, W. N. Biochemistry 1995, 34, 14792-14800.
5. Jabri, E.; Carr, M.; Hausinger, R.; Karplus, P. Science 1995, 268, 998-1004.
6. Roderick, S.; Matthews, B. Biochemistry 1993, 32, 3907-3912.
7. Kanyo, Z.; Scolnick, L.; Ash, D.; Christianson, D. Nature 1996, 383, 554-557.
8. Kim, E. E.; Wyckoff, H. W. J. Mol. Biol. 1991, 218, 449-464.
9. E. Dorn, J. Chem. Soc. Chem. Commun. 1971, 466, 1971-1977.
10. Lobbia, G. G.; Bonati, F.; Cecchi, P.; Pettinari, C. Gazz. Chim. Ital. 1991, 121, 355-356.
11. Bravo-Zhivotovskii, D.; Yuzefovich, M.; Bendikov, M.; Klinkhammer, K.; Apeloig, Y. Angew. Chem., Int. Ed. 1999, 38, 1100-1102.
12. Faggiani, R.; Gillespie, R. J.; Vekris, J. E. J. Chem. Soc., Chem. Commun. 1986, 1986, 517-518.
13. Reger, D. L.; Mason, S. S.; Rheingold, A. L. J. Am. Chem. Soc. 1993, 115, 10406-10407.
14. Chai, J.; Zhu, H.; Ma, Q.; Schmidt, H. G.; Noltemeyer, M. Roesky, H. W. Eur. J. Inorg. Chem. 2004, 24, 4807-4811.
15. (a) Rio, D. D.; Galindo, A.; Resa, I.; Carmona, E. Angew. Chem. Int. Ed. 2005, 44, 1244-1247. (b) Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. Science 2004, 305, 1136-1138.
16. Wang, Y.; Quillian, B.; Wei, P.; Wang, H.; Yang, X. J.; Xie, Y.; King, R. B.; Schleyer, P. v. R.; Schaefer, H. F.; Robinson, G. H. J. Am. Chem. Soc. 2005, 127, 11944-11945.
17. Zhu, Z.; Wright, R. J.; Olmstead, M. M.; Rivard, E.; Brynda, M.; Power, P. P. Angew. Chem., Int. Ed. 2006, 45, 5807-5810.
18. Zhu, Z.; Fischer, R. C.; Fettinger, J. C.; Rivard, E.; Brynda, M.; Power, P. P. J. Am. Chem. Soc. 2006, 128, 15068-15069.
19. Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky,E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738-8749.
20. Shannon, R. D. Acta Crystallogr., Sect. A 1976, 32, 751-767.
21. Kawaguchi, H.; Matsuo, T. J. Am. Chem. Soc. 2003, 125, 14254-14255.
22. Cotton, F. A.; Hillard, E. A.; Murillo, C. A.; Wang, X. Inorg. Chem. 2003, 42, 6063-6070.
23. Miyasaka, H.; Izawa, T.; Sugiura, K.; Yamashita, M. Inorg. Chem. 2003, 42, 7683-7690.
24. Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 1999, 121, 11583-11584.
25. Smith, J. M.; Lachicotte, R. J.; Pittard, K. A.; Cundari, T. R.; Lukat-Rodgers, G.; Rodgers, K. R.; Holland, P. L. J. Am. Chem. Soc. 2001, 123, 9222- 9223.
26. Hardman, N. J.; Wright, R. J. ; Phillips, A. D.; Power , P. P. Angew. Chem. Int. Ed. 2002, 41, 2842-2844.
27. Pu, L.; Phillips, A. D.; Richards, A. F.; Stender, M.; Simons, R. S.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 11626-11636.
28. Parkin, G. Science 2004, 305, 1117-1118.
29. Xie, Y.; Schaefer, H. F.; King, R. B. J. Am. Chem. Soc. 2005, 127, 2818-2819.
30. Hao, H.; Cui, C.; Roesky, H. W.; Bai, G.; Schmidt, H. G.; Noltemeyer, M. Chem. Commun. 2001, 2001, 1118-1119.
31. Bergquist, C.; Koutcher, L.; Vaught, A. L.; Parkin, G. Inorg. Chem. 2002, 41, 625-627.
32. Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wiley: New York, 1985.
33. Shriver, D. F.; Atkins, P. W. Inorganic Chemistry, 3rd ed; Oxford: New York, 1999.
34. (a) Tennyson, J.; Miller, S. Spectrochimica Acta Part A, 2001, 57, 661-667. (b) Miller, S.; Tennyson, J. Chem. Soc. Rev. 1992, 21, 288.
35. (a) Liang, X.; Parkinson, J. A.; Parsons, S.; Weishaupl, M.; Sadler, P. J. Inorg. Chem. 2002, 41, 4539-4547. (b) Li, W.; Jia, H. P.; Ju, Z. F.; Zang, J. Crystal Growth & Design 2006, 6, 2136-2140.