研究生: |
黃鈺昇 Huang, Yu-Sheng |
---|---|
論文名稱: |
連續性少層數二硫化鉬薄膜與金奈米顆粒於增益光催化產氫之研究 Improvement of Hydrogen Production with Continuous Few-Layer MoS2 Thin Film and Au Nanoparticles as Photocatalysts |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: |
彭宗平
Perng, Tsong-Pyng 呂明諺 Lu, Ming-Yen 鄭晃忠 Cheng, Huang-Chung 吳文偉 Wu, Wen-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 96 |
中文關鍵詞: | 局域性電漿表面共振 、二硫化鉬 、光催化 |
外文關鍵詞: | Localized Surface Plasmon Resonance, Molybdenum Disulfide, Photocatalyst |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
20世紀以來,因化石能源的漸趨枯竭以及全球暖化加劇,使得以氫能源作為一種替代能源受到矚目;光催化分解水產氫的研究是一極俱潛力的能源再生方法。近年來,電漿子金屬與適當能隙半導體材料所形成的複合奈米結構因其特殊的表面電漿特性以及良好的光吸收性質而受到許多重視,並且許多研究也指出此等複合奈米結構能有效提升半導體材料的光催化能力。
研究指出因表面電漿共振所產生在奈米金屬顆粒表面的電場強度,會隨著在與表面距離的增加而產生指數性的遞減。因此本論文中,我們設計大面積薄膜的形式與金奈米顆粒-二硫化鉬複合奈米結構,以此為基礎探討不同的金奈米顆粒尺寸及分布對近表面電場的強度影響,進而研究其對光催化分解水產氫的影響。透過熱裂解的方式成長出連續堆積的大面積二硫化鉬薄膜並與金奈米顆粒結合,形成二硫化鉬薄膜在金奈米顆粒上方與下方兩種結構,並依此兩種複合結構進行光催化分解水的比較。結果顯示二硫化鉬薄膜覆蓋在金顆粒上方的複合結構更能有效的利用金顆粒表面電漿共振所產生的近表面電場,因此也擁有較佳的光催化能力。此外,在該結構中,適當的金顆粒的尺寸及間隙距離會使該結構擁有最高的單位面積產氫量,相較於原生二硫化鉬薄膜有了3.8倍的增益,產氫效率也高達279 〖mmol〗^(-1)∙g^(-1)∙h^(-1)。
此外,我們使用電漿表面處理技術,在二硫化鉬表面形成硫缺陷,使得光催化分解水的的活化點增加,進而增強光催化分解水的能力。我們利用適當強度的氬電漿與試片表面作用,形成最佳比例的硫缺陷,以此進一步使金奈米顆粒-二硫化鉬薄膜試片擁有更高的單位面積產氫量,達到334 〖mmol〗^(-1)∙g^(-1)∙h^(-1)。透過本篇論文的研究,對於未來設計電漿子金屬-半導體複合結構應用時,能有更深一層了解並有望達到更大的增益作用。
Since the late 20th century, due to the exhaustive consumption of petrochemical fuels and the intensification of global warming, hydrogen fuel has attracted much attention as an alternative energy source. Photocatalytic water splitting for hydrogen production has become a promising energy regeneration method in recent years. The hybrid nanostructures formed by plasmonic metals and narrow-gap semiconductor materials have received a lot of attention due to their special surface plasmonic properties and appropriate light absorption properties. Moreover, many studies have also found that such hybrid nanostructures can effectively improve the photocatalytic ability of semiconductor materials.
Previous research has indicated that the intensity of localized surface plasmon resonance (LSPR) induced electric field near the surface of plasmonic nanoparticles would decrease exponentially as the distance from the surface increases. Thus, in this thesis work, we designed the form of large-area thin film molybdenum disulfide/gold nanoparticle hybrid structures to explore the influence of different gold nanoparticle sizes and distributions on the near-surface electric field intensity, and then further study the effect on photocatalytic decomposition of water to produce hydrogen. Through the thermal decomposition method, large-area continuously stacked molybdenum disulfide films were grown and combined with the gold nanoparticle to form two hybrid structures: molybdenum disulfide film above and below the gold nanoparticle. Two forms of hybrid structures were used for the comparison of photocatalytic water splitting hydrogen production. The results show that the hybrid structures with the molybdenum disulfide film covering the gold particles could more effectively utilize the near-surface electric field generated by the LSPR of the gold particles, and therefore, they also have better photocatalytic water splitting ability. In addition, in this structure, the proper size and gap distance of the gold particles would enable the structure to have the highest hydrogen production per unit area, which was achieved to be 3.8 times higher than the pristine molybdenum disulfide film, and the hydrogen production efficiency was as high as 279 〖mmol〗^(-1)∙g^(-1)∙h^(-1).
In addition, we used plasma surface treatment technology to form sulfur defects on the surface of molybdenum disulfide, which increases the active sites for photocatalytic water splitting, thereby enhancing the ability of photocatalytic water splitting. Argon plasma generated with appropriate power was used to bombard the surface of the samples to form a suitable proportion of sulfur defects, so as to further enable the gold nanoparticle-molybdenum disulfide film samples to have higher hydrogen production, reaching 334 〖mmol〗^(-1)∙g^(-1)∙h^(-1). The investigation not only achieves superb photocataytic performance but also leads to basic understanding of controlling mechanism to enhance the hydrogen production of few layer MoS2/Au nanoparticles composite structures.
1. A. K. Geim, K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films. Science, 2004, 306, 666-669.
2. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett, 2008, 8, 902-907.
3. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv Mater, 2010, 22, 3906-3924.
4. R. F. Frindt, Single Crystals of MoS2 Several Molecular Layers Thick. Journal of Applied Physics, 1966, 37, 1928-1929.
5. M. C. Valeria Nicolosi, Mercouri G. Kanatzidis, Michael S. Strano, Jonathan N. Coleman, Liquid Exfoliation of Layered Materials. Science, 2013, 340, 1226419-1226419.
6. Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng, and H. Zhang, An Effective Method for the Fabrication of Few-Layer-Thick Inorganic Nanosheets. Angew Chem Int Ed Engl, 2012, 51, 9052-9056.
7. J. Zheng, H. Zhang, S. Dong, Y. Liu, C. T. Nai, H. S. Shin, H. Y. Jeong, B. Liu, and K. P. Loh, High Yield Exfoliation of Two-Dimensional Chalcogenides Using Sodium Naphthalenide. Nat Commun, 2014, 5, 2995.
8. J. R. Brent, N. Savjani, and P. O. Brien, Synthetic Approaches to Two-Dimensional Transition Metal Dichalcogenide Nanosheets. Progress in Materials Science, 2017, 89, 411-478.
9. A. Kuc, Low-Dimensional Transition-Metal Dichalcogenides. 2014, 11, 1-29.
10. S. K. Pandey, R. Das, and P. Mahadevan, Layer-Dependent Electronic Structure Changes in Transition Metal Dichalcogenides: The Microscopic Origin. ACS Omega, 2020, 5, 15169-15176.
11. L. Wang, L. Chen, S. L. Wong, X. Huang, W. Liao, C. Zhu, Y. F. Lim, D. Li, X. Liu, D. Chi, and K. W. Ang, Electronic Devices and Circuits Based on Wafer‐Scale Polycrystalline Monolayer MoS2 by Chemical Vapor Deposition. Advanced Electronic Materials, 2019, 5, 1900393.
12. H. Kwon, S. Garg, J. H. Park, Y. Jeong, S. Yu, S. M. Kim, P. Kung, and S. Im, Monolayer MoS2 Field-Effect Transistors Patterned by Photolithography for Active Matrix Pixels in Organic Light-Emitting Diodes. npj 2D Materials and Applications, 2019, 3.
13. L. Z. Hao, W. Gao, Y. J. Liu, Z. D. Han, Q. Z. Xue, W. Y. Guo, J. Zhu, and Y. R. Li, High-Performance N-MoS2/I-SiO2/P-Si Heterojunction Solar Cells. Nanoscale, 2015, 7, 8304-8.
14. O. M. Yaghi, H. Furukawa, Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc, 2009, 131, 8875-8883.
15. Y. Tachibana, L. Vayssieres, and J. R. Durrant, Artificial Photosynthesis for Solar Water-Splitting. Nature Photonics, 2012, 6, 511-518.
16. K. H. A. Fujishima, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972, 238, 37-38.
17. L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, and Y. Yang, MoS2/TiO2 Heterostructures as Nonmetal Plasmonic Photocatalysts for Highly Efficient Hydrogen Evolution. Energy & Environmental Science, 2018, 11, 106-114.
18. J. Sun, L. Duan, Q. Wu, and W. Yao, Synthesis of MoS2 Quantum Dots Cocatalysts and Their Efficient Photocatalytic Performance for Hydrogen Evolution. Chemical Engineering Journal, 2018, 332, 449-455.
19. P. Du, Y. Zhu, J. Zhang, D. Xu, W. Peng, G. Zhang, F. Zhang, and X. Fan, Metallic 1T Phase MoS2 Nanosheets as a Highly Efficient Co-Catalyst for the Photocatalytic Hydrogen Evolution of CdS Nanorods. RSC Advances, 2016, 6, 74394-74399.
20. I. S. Cho, Z. Chen, A. J. Forman, D. R. Kim, P. M. Rao, T. F. Jaramillo, and X. Zheng, Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production. Nano Lett, 2011, 11, 4978-84.
21. S. J. A. Moniz, S. A. Shevlin, D. J. Martin, Z.-X. Guo, and J. Tang, Visible-Light Driven Heterojunction Photocatalysts for Water Splitting – A Critical Review. Energy & Environmental Science, 2015, 8, 731-759.
22. Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, and J. R. Gong, Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. J Am Chem Soc, 2011, 133, 10878-84.
23. J. Joe, H. Yang, C. Bae, and H. Shin, Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview. Catalysts, 2019, 9, 149.
24. T. F. Jaramillo, K. P. Jorgensen, J. Bonde, J. H. Nielsen, S. Horch, and I. Chorkendorff, Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science, 2007, 317, 100-2.
25. L. Madauss, I. Zegkinoglou, H. Vazquez Muinos, Y. W. Choi, S. Kunze, M. Q. Zhao, C. H. Naylor, P. Ernst, E. Pollmann, O. Ochedowski, H. Lebius, A. Benyagoub, B. Ban-d'Etat, A. T. C. Johnson, F. Djurabekova, B. Roldan Cuenya, and M. Schleberger, Highly Active Single-Layer MoS2 Catalysts Synthesized by Swift Heavy Ion Irradiation. Nanoscale, 2018, 10, 22908-22916.
26. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, and Y. Xie, Controllable Disorder Engineering in Oxygen-Incorporated MoS2 Ultrathin Nanosheets for Efficient Hydrogen Evolution. J Am Chem Soc, 2013, 135, 17881-8.
27. G. Li, D. Zhang, Q. Qiao, Y. Yu, D. Peterson, A. Zafar, R. Kumar, S. Curtarolo, F. Hunte, S. Shannon, Y. Zhu, W. Yang, and L. Cao, All the Catalytic Active Sites of MoS2 for Hydrogen Evolution. J Am Chem Soc, 2016, 138, 16632-16638.
28. J. Kibsgaard, Z. Chen, B. N. Reinecke, and T. F. Jaramillo, Engineering the Surface Structure of MoS2 to Preferentially Expose Active Edge Sites for Electrocatalysis. Nat Mater, 2012, 11, 963-9.
29. Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song, and S. Jin, Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets. J Am Chem Soc, 2016, 138, 7965-72.
30. K. Maeda and K. Domen, Photocatalytic Water Splitting: Recent Progress and Future Challenges. The Journal of Physical Chemistry Letters, 2010, 1, 2655-2661.
31. R. H. Ritchie, Plasma Losses by Fast Electrons in Thin Films. Physical Review, 1957, 106, 874-881.
32. Z. Wang and P. Cheng, Enhancements of Absorption and Photothermal Conversion of Solar Energy Enabled by Surface Plasmon Resonances in Nanoparticles and Metamaterials. International Journal of Heat and Mass Transfer, 2019, 140, 453-482.
33. X. Liu and M. T. Swihart, Heavily-Doped Colloidal Semiconductor and Metal Oxide Nanocrystals: An Emerging New Class of Plasmonic Nanomaterials. Chem Soc Rev, 2014, 43, 3908-20.
34. S. Zhou, X. Pi, Z. Ni, Y. Ding, Y. Jiang, C. Jin, C. Delerue, D. Yang, and T. Nozaki, Comparative Study on the Localized Surface Plasmon Resonance of Boron- and Phosphorus-Doped Silicon Nanocrystals. ACS Nano, 2015, 9, 378-86.
35. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia, Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem Rev, 2011, 111, 3669-712.
36. S. Mahmud, S. S. Satter, A. K. Singh, M. M. Rahman, M. Y. A. Mollah, and M. Susan, Tailored Engineering of Bimetallic Plasmonic Au@Ag Core@Shell Nanoparticles. ACS Omega, 2019, 4, 18061-18075.
37. M. Shabaninezhad and G. Ramakrishna, Theoretical Investigation of Size, Shape, and Aspect Ratio Effect on the Lspr Sensitivity of Hollow-Gold Nanoshells. J Chem Phys, 2019, 150, 144116.
38. H. B. Jeon, P. V. Tsalu, and J. W. Ha, Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices. Sci Rep, 2019, 9, 13635.
39. V. A. G. Rivera, F. A. Ferri, and E. Marega, Localized Surface Plasmon Resonances: Noble Metal Nanoparticle Interaction with Rare-Earth Ions. 2012.
40. C. Kuppe, K. R. Rusimova, L. Ohnoutek, D. Slavov, and V. K. Valev, “Hot” in Plasmonics: Temperature‐Related Concepts and Applications of Metal Nanostructures. Advanced Optical Materials, 2019, 8, 1901166.
41. S. Kasani, K. Curtin, and N. Wu, A Review of 2d and 3d Plasmonic Nanostructure Array Patterns: Fabrication, Light Management and Sensing Applications. Nanophotonics, 2019, 8, 2065-2089.
42. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, Aluminum Plasmonic Nanoantennas. Nano Lett, 2012, 12, 6000-4.
43. J. W. Xiao, S. X. Fan, F. Wang, L. D. Sun, X. Y. Zheng, and C. H. Yan, Porous Pd Nanoparticles with High Photothermal Conversion Efficiency for Efficient Ablation of Cancer Cells. Nanoscale, 2014, 6, 4345-51.
44. J. B. Khurgin and G. Sun, In Search of the Elusive Lossless Metal. Applied Physics Letters, 2010, 96, 181102.
45. M. Kumar, N. Umezawa, S. Ishii, and T. Nagao, Examining the Performance of Refractory Conductive Ceramics as Plasmonic Materials: A Theoreti Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, Surface Plasmon-Driven Hot Electron Flow Probed with Metal-Semiconductor Nanodiodes. Nano Lett, 2011, 11, 4251-5.
47. Z. W. Seh, S. Liu, M. Low, S. Y. Zhang, Z. Liu, A. Mlayah, and M. Y. Han, Janus Au-TiO2 Photocatalysts with Strong Localization of Plasmonic near-Fields for Efficient Visible-Light Hydrogen Generation. Adv Mater, 2012, 24, 2310-4.
48. F. Wang and N. A. Melosh, Plasmonic Energy Collection through Hot Carrier Extraction. Nano Lett, 2011, 11, 5426-30.
49. B.-H. Wu, W.-T. Liu, T.-Y. Chen, T.-P. Perng, J.-H. Huang, and L.-J. Chen, Plasmon-Enhanced Photocatalytic Hydrogen Production on Au/TiO2 Hybrid Nanocrystal Arrays. Nano Energy, 2016, 27, 412-419.
50. X. Li, S. Guo, C. Kan, J. Zhu, T. Tong, S. Ke, W. C. H. Choy, and B. Wei, Au Multimer@MoS2 Hybrid Structures for Efficient Photocatalytical Hydrogen Production Via Strongly Plasmonic Coupling Effect. Nano Energy, 2016, 30, 549-558.
51. Y. Shi, J. Wang, C. Wang, T. T. Zhai, W. J. Bao, J. J. Xu, X. H. Xia, and H. Y. Chen, Hot Electron of Au Nanorods Activates the Electrocatalysis of Hydrogen Evolution on MoS2 Nanosheets. J Am Chem Soc, 2015, 137, 7365-70.
52. P. Zhang, M. Fujitsuka, and T. Majima, Hot Electron-Driven Hydrogen Evolution Using Anisotropic Gold Nanostructure Assembled Monolayer MoS2. Nanoscale, 2017, 9, 1520-1526.
53. C. Hsu, R. Frisenda, R. Schmidt, A. Arora, S. M. Vasconcellos, R. Bratschitsch, H. S. J. Zant, and A. Castellanos‐Gomez, Thickness‐Dependent Refractive Index of 1L, 2L, and 3L MoS2, Mose2, WS2, and WSe2. Advanced Optical Materials, 2019, 7, 1900239.
54. R. Saito, Y. Miseki, and K. Sayama, Highly Efficient Photoelectrochemical Water Splitting Using a Thin Film Photoanode of BiVO4/SnO2/WO3 Multi-Composite in a Carbonate Electrolyte. Chem Commun (Camb), 2012, 48, 3833-5.
55. L. Liang and V. Meunier, First-Principles Raman Spectra of MoS2, WS2 and Their Heterostructures. Nanoscale, 2014, 6, 5394-401.
56. H. Ahmad, S. K. Kamarudin, L. J. Minggu, and M. Kassim, Hydrogen from Photo-Catalytic Water Splitting Process: A Review. Renewable and Sustainable Energy Reviews, 2015, 43, 599-610.
57. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production. Renewable and Sustainable Energy Reviews, 2007, 11, 401-425.
58. Z. Cheng, X. Zhan, F. Wang, Q. Wang, K. Xu, Q. Liu, C. Jiang, Z. Wang, and J. He, Construction of CuIns2/Ag Sensitized ZnO Nanowire Arrays for Efficient Hydrogen Generation. RSC Advances, 2015, 5, 81723-81727.
59. G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation. Nano Lett, 2010, 10, 1088-92.
60. Y.-C. Chen, Y.-S. Huang, H. Huang, P.-J. Su, T.-P. Perng, and L.-J. Chen, Photocatalytic Enhancement of Hydrogen Production in Water Splitting under Simulated Solar Light by Band Gap Engineering and Localized Surface Plasmon Resonance of ZnxCd1-XS Nanowires Decorated by Au Nanoparticles. Nano Energy, 2020, 67, 104225.
61. S. Tso, W.-S. Li, B.-H. Wu, and L.-J. Chen, Enhanced H2 Production in Water Splitting with CdS-ZnS Core-Shell Nanowires. Nano Energy, 2018, 43, 270-277.
62. M. Berr, A. Vaneski, A. S. Susha, J. Rodríguez-Fernández, M. Döblinger, F. Jäckel, A. L. Rogach, and J. Feldmann, Colloidal CdS Nanorods Decorated with Subnanometer Sized Pt Clusters for Photocatalytic Hydrogen Generation. Applied Physics Letters, 2010, 97, 093108.
63. J. Shi, Y. Zhang, Y. Hu, X. Guan, Z. Zhou, and L. Guo, NH3-Treated MoS2 Nanosheets as Photocatalysts for Enhanced H2 Evolution under Visible-Light Irradiation. Journal of Alloys and Compounds, 2016, 688, 368-375.
64. Meng-Lin Tsai, Sheng-Han Su, Jan-Kai Chang, Dung-Sheng Tsai, Chang-Hsiao Chen, Chih-I Wu, Lain-Jong Li, Lih-Juann Chen, and J.-H. He., Monolayer MoS2 Heterojunction Solar Cells. ACS Nano, 2014, 8, 8317–8322.
65. W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, C. T. Liang, Y. Z. Chen, Y. L. Chueh, J. H. He, M. Y. Chou, and L. J. Li, Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci Rep, 2014, 4, 3826.
66. A. Hasani, Q. V. Le, M. Tekalgne, M.-J. Choi, T. H. Lee, H. W. Jang, and S. Y. Kim, Direct Synthesis of Two-Dimensional MoS2 on P-Type Si and Application to Solar Hydrogen Production. NPG Asia Materials, 2019, 11.
67. K. Kobayashi and J. Yamauchi, Electronic Structure and Scanning-Tunneling-Microscopy Image of Molybdenum Dichalcogenide Surfaces. Phys Rev B Condens Matter, 1995, 51, 17085-17095.
68. D. A. Reddy, H. Park, S. Hong, D. P. Kumar, and T. K. Kim, Hydrazine-Assisted Formation of Ultrathin MoS2 Nanosheets for Enhancing Their Co-Catalytic Activity in Photocatalytic Hydrogen Evolution. Journal of Materials Chemistry A, 2017, 5, 6981-6991.
69. P. Ganguly, M. Harb, Z. Cao, L. Cavallo, A. Breen, S. Dervin, D. D. Dionysiou, and S. C. Pillai, 2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 2019, 4, 1687-1709.
70. C. Wu, J. Zhang, X. Tong, P. Yu, J. Y. Xu, J. Wu, Z. M. Wang, J. Lou, and Y. L. Chueh, A Critical Review on Enhancement of Photocatalytic Hydrogen Production by Molybdenum Disulfide: From Growth to Interfacial Activities. Small, 2019, 15, 1900578.
71. J. Xie, H. Zhang, S. Li, R. Wang, X. Sun, M. Zhou, J. Zhou, X. W. Lou, and Y. Xie, Defect-Rich MoS2 Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. Adv Mater, 2013, 25, 5807-13.
72. P. Zhang, H. Xiang, L. Tao, H. Dong, Y. Zhou, T. S. Hu, X. Chen, S. Liu, S. Wang, and S. Garaj, Chemically Activated MoS2 for Efficient Hydrogen Production. Nano Energy, 2019, 57, 535-541.
73. S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykov, and K. Kalantar-Zadeh, Atomically Thin Layers of MoS2 Via a Two Step Thermal Evaporation-Exfoliation Method. Nanoscale, 2012, 4, 461-6.
74. C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010, 4, 2695-700.
75. K. S. Kim, K. H. Kim, Y. Nam, J. Jeon, S. Yim, E. Singh, J. Y. Lee, S. J. Lee, Y. S. Jung, G. Y. Yeom, and D. W. Kim, Atomic Layer Etching Mechanism of MoS2 for Nanodevices. ACS Appl Mater Interfaces, 2017, 9, 11967-11976.
76. L. K. Tan, B. Liu, J. H. Teng, S. Guo, H. Y. Low, H. R. Tan, C. Y. Chong, R. B. Yang, and K. P. Loh, Atomic Layer Deposition of a MoS2 Film. Nanoscale, 2014, 6, 10584-8.
77. Z. Wu, B. Fang, Z. Wang, C. Wang, Z. Liu, F. Liu, W. Wang, A. Alfantazi, D. Wang, and D. P. Wilkinson, MoS2 Nanosheets: A Designed Structure with High Active Site Density for the Hydrogen Evolution Reaction. ACS Catalysis, 2013, 3, 2101-2107.
78. X. Gan, L. Y. S. Lee, K.-y. Wong, T. W. Lo, K. H. Ho, D. Y. Lei, and H. Zhao, 2H1T Phase Transition of Multilayer MoS2 by Electrochemical Incorporation of S Vacancies. ACS Applied Energy Materials, 2018, 1, 4754-4765.
79. C. Hu, C. Yuan, A. Hong, M. Guo, T. Yu, and X. Luo, Work Function Variation of Monolayer MoS2 by Nitrogen-Doping. Applied Physics Letters, 2018, 113, 041602.
80. Y. Tian and T. Tatsuma, Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. J Am Chem Soc, 2005, 127, 7632-7.
81. P. H. Liu, M. Wen, C. S. Tan, M. N. García, Y. Kuwahara, K. Mori, H. Yamashita, and L. J. Chen, Surface Plasmon Resonance Enhancement of Production of H2 from Ammonia Borane Solution with Tunable Cu2−XS Nanowires Decorated by Pd Nanoparticles. Nano Energy, 2017, 31, 57-63.
82. H. W. Ting, Y. K. Lin, Y. J. Wu, L. J. Chou, C. J. Tsai, and L. J. Chen, Large Area Controllable Hexagonal Close-Packed Single-Crystalline Metal Nanocrystal Arrays with Localized Surface Plasmon Resonance Response. Journal of Materials Chemistry C, 2013, 1, 3593.
83. J. Jadwiszczak, G. Li, C. P. Cullen, J. J. Wang, P. Maguire, G. S. Duesberg, J. G. Lunney, and H. Zhang, Photoresponsivity Enhancement in Monolayer MoS2 by Rapid O2:Ar Plasma Treatment. Applied Physics Letters, 2019, 114, 091103.
84. M. R. Islam, N. Kang, U. Bhanu, H. P. Paudel, M. Erementchouk, L. Tetard, M. N. Leuenberger, and S. I. Khondaker, Tuning the Electrical Property Via Defect Engineering of Single Layer MoS2 by Oxygen Plasma. Nanoscale, 2014, 6, 10033-9.
85. Y. Chen, S. Huang, X. Ji, K. Adepalli, K. Yin, X. Ling, X. Wang, J. Xue, M. Dresselhaus, J. Kong, and B. Yildiz, Tuning Electronic Structure of Single Layer MoS2 through Defect and Interface Engineering. ACS Nano, 2018, 12, 2569-2579.
86. C. Tsai, H. Li, S. Park, J. Park, H. S. Han, J. K. Norskov, X. Zheng, and F. Abild-Pedersen, Electrochemical Generation of Sulfur Vacancies in the Basal Plane of MoS2 for Hydrogen Evolution. Nat Commun, 2017, 8, 15113.
87. Y. Zhang, Y. Kuwahara, K. Mori, and H. Yamashita, Defect Engineering of MoS2 and Its Impacts on Electrocatalytic and Photocatalytic Behavior in Hydrogen Evolution Reactions. Chem Asian J, 2019, 14, 278-285.
88. G.-Y. Zhao, H. Deng, N. Tyree, M. Guy, A. Lisfi, Q. Peng, J.-A. Yan, C. Wang, and Y. Lan, Recent Progress on Irradiation-Induced Defect Engineering of Two-Dimensional 2H-Mos2 Few Layers. Applied Sciences, 2019, 9, 678.
89. X. Wang, Y. Zhang, H. Si, Q. Zhang, J. Wu, L. Gao, X. Wei, Y. Sun, Q. Liao, Z. Zhang, K. Ammarah, L. Gu, Z. Kang, and Y. Zhang, Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS2. J Am Chem Soc, 2020, 142, 4298-4308.
90. Y. Cheng, H. Song, H. Wu, P. Zhang, Z. Tang, and S. Lu, Defects Enhance the Electrocatalytic Hydrogen Evolution Properties of MoS2 -Based Materials. Chem Asian J, 2020, 15, 3123-3134.
91. X. H. Zhang, N. Li, J. Wu, Y. Z. Zheng, and X. Tao, Defect-Rich O-Incorporated 1T-MoS2 Nanosheets for Remarkably Enhanced Visible-Light Photocatalytic H2 Evolution over Cds: The Impact of Enriched Defects. Applied Catalysis B: Environmental, 2018, 229, 227-236.
92. Y. Ma, G. Hai, D. G. Atinafu, W. Dong, R. Li, C. Hou, and G. Wang, Carbon Inserted Defect-Rich MoS2-X Nanosheets@Cds Nanospheres for Efficient Photocatalytic Hydrogen Evolution under Visible Light Irradiation. J Colloid Interface Sci, 2020, 569, 89-100.
93. C. C. Cheng, A. Y. Lu, C. C. Tseng, X. Yang, M. N. Hedhili, M. C. Chen, K. H. Wei, and L. J. Li, Activating Basal-Plane Catalytic Activity of Two-Dimensional MoS2 Monolayer with Remote Hydrogen Plasma. Nano Energy, 2016, 30, 846-852.
94. Y. Zhao, M. T. Tang, S. Wu, J. Geng, Z. Han, K. Chan, P. Gao, and H. Li, Rational Design of Stable Sulfur Vacancies in Molybdenum Disulfide for Hydrogen Evolution. Journal of Catalysis, 2020, 382, 320-328.
95. S. Bae, N. Sugiyama, T. Matsuo, H. Raebiger, K.I. Shudo, and K. Ohno, Defect-Induced Vibration Modes of Ar+ Irradiated MoS2. Physical Review Applied, 2017, 7.
96. A. Inoue, T. Komori, and K. I. Shudo, Atomic-Scale Structures and Electronic States of Defects on Ar+ Ion Irradiated MoS2. Journal of Electron Spectroscopy and Related Phenomena, 2013, 189, 11-18.
97. A. Soman, R. A. Burke, Q. Li, M. D. Valentin, T. Li, D. Mao, M. Dubey, and T. Gu, Hydrogen Plasma Exposure of Monolayer MoS2 Field-Effect Transistors and Prevention of Desulfurization by Monolayer Graphene. ACS Appl Mater Interfaces, 2020, 12, 37305-37312.
98. J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang, J. Meng, M. Liao, J. Zhao, X. Lu, L. Du, R. Yang, D. Shi, Y. Jiang, and G. Zhang, Argon Plasma Induced Phase Transition in Monolayer MoS2. J Am Chem Soc, 2017, 139, 10216-10219.
99. M. A. Baker, R. Gilmore, C. Lenardi, and W. Gissler, Xps Investigation of Preferential Sputtering of S from MoS2 and Determination of MoSx Stoichiometry from Mo and S Peak Positions. Applied Surface Science, 1999, 150, 255-262.
100. S. H. Tseng, H.Y. Chen, W. T. Hsu, H. C. Wang, Y. Y. Li, W. H. Chang, M. P. Lu, and M.Y. Lu, Influences of Contact Metals on the Performances of MoS2 Devices under Strains. The Journal of Physical Chemistry C, 2019, 123, 30696-30703.
101. S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Gilmore, M. A. Pimenta, D. Richards, and D. Roy, Effect of Disorder on Raman Scattering of Single-Layer MoS2. Physical Review B, 2015, 91.
102. G. L. Frey, R. Tenne, M. J. Matthews, M. S. Dresselhaus, and G. Dresselhaus, Raman and Resonance Raman Investigation of MoS2 nanoparticles. Physical Review B, 1999, 60, 2883-2892.
103. A. Molina-Sánchez and L. Wirtz, Phonons in Single-Layer and Few-Layer MoS2 and WS2. Physical Review B, 2011, 84.
104. W. M. Parkin, A. Balan, L. Liang, P. M. Das, M. Lamparski, C. H. Naylor, J. A. Rodriguez-Manzo, A. T. Johnson, V. Meunier, and M. Drndic, Raman Shifts in Electron-Irradiated Monolayer MoS2. ACS Nano, 2016, 10, 4134-42.
105. B. Li, L. Jiang, X. Li, P. Ran, P. Zuo, A. Wang, L. Qu, Y. Zhao, Z. Cheng, and Y. Lu, Preparation of Monolayer MoS2 Quantum Dots Using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS2 Targets in Water. Sci Rep, 2017, 7, 11182.
106. L. Tao, X. Duan, C. Wang, X. Duan, and S. Wang, Plasma-Engineered MoS2 Thin-Film as an Efficient Electrocatalyst for Hydrogen Evolution Reaction. Chem Commun (Camb), 2015, 51, 7470-3.
107. J. Jadwiszczak, C. O'Callaghan, Y. Zhou, D. S. Fox, E. Weitz, D. Keane, C. P. Cullen, I. O'Reilly, C. Downing, A. Shmeliov, P. Maguire, J. J. Gough, C. McGuinness, M. S. Ferreira, A. L. Bradley, J. J. Boland, G. S. Duesberg, V. Nicolosi, and H. Zhang, Oxide-Mediated Recovery of Field-Effect Mobility in Plasma-Treated MoS2. Sci Adv, 2018, 4, 5031.
108. B. S. Goud, G. Koyyada, J. H. Jung, G. R. Reddy, J. Shim, N. D. Nam, and S. V. P. Vattikuti, Surface Oxygen Vacancy Facilitated Z-Scheme MoS2/Bi2O3 Heterojunction for Enhanced Visible-Light Driven Photocatalysis-Pollutant Degradation and Hydrogen Production. International Journal of Hydrogen Energy, 2020, 45, 18961-18975.
109. H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B. K. Tay, C. Xue, X. Hu, S. T. Pantelides, W. Zhou, and Z. Liu, MoS2/TiO2 Edge-on Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1600464.
110. S. Zhang, X. Liu, C. Liu, S. Luo, L. Wang, T. Cai, Y. Zeng, J. Yuan, W. Dong, Y. Pei, and Y. Liu, MoS2 Quantum Dot Growth Induced by S Vacancies in a ZnIn2S4 Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production. ACS Nano, 2018, 12, 751-758.
111. J. He, L. Chen, F. Wang, Y. Liu, P. Chen, C. T. Au, and S. F. Yin, CdS Nanowires Decorated with Ultrathin MoS2 Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution. ChemSusChem, 2016, 9, 624-30.
112. U. Maitra, U. Gupta, M. De, R. Datta, A. Govindaraj, and C. N. Rao, Highly Effective Visible-Light-Induced H2 Generation by Single-Layer 1t-MoS2 and a Nanocomposite of Few-Layer 2H-MoS2 with Heavily Nitrogenated Graphene. Angew Chem Int Ed Engl, 2013, 52, 13057-61.
113. C. H. Sharma, A. P. Surendran, A. Varghese, and M. Thalakulam, Stable and Scalable 1T MoS2 with Low Temperature-Coefficient of Resistance. Sci Rep, 2018, 8, 12463.