研究生: |
孔思蒼 Su-Tsang Kung |
---|---|
論文名稱: |
生物燃料電池陽極酵素觸媒氫離子擴散分子動力模擬與電傳導率分析 Molecular Dynamics Simulation of Proton Diffusivity and Conductivity Analysis at Enzymatic Biofuel Cell Anode |
指導教授: |
洪哲文
Che-Wun Hong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 生物燃料電池 、分子動力模擬 、氫離子傳導性 |
外文關鍵詞: | Biofuel Cell, MD Simulation, Proton Conductivity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討生物酵素燃料電池中,陽極觸媒與陽極電極間的氫離子擴散現象。酵素燃料電池與傳統燃料電池的差異在於其觸媒部份並非使用像白金等貴金屬元素,而是使用生物分子例如酵素等當成電池的觸媒。不過由於電極與觸媒都是浸泡在如磷酸鹽等的中性電解質溶液中,氫離子與電子很容易在溶液中消散,因此如何能夠有效的收集它們,便成為影響電池效率一個重要的環節。現今生物科技的技術正值蓬勃起飛的時刻,正好提供了酵素燃料電池一個契機,若是能藉由這些技術,將它改良成可以植入人體內作為電源供應器的一個元件,想必對人類定有很大的貢獻。
研究中指出當陽極電極收集到越多電子,因為電催化效應的關係,也會導致陰極的還原反應變劇烈,在這個時候若是陰極部份可以得到足夠多的氫離子供還原反應使用,電池的整體性能便會上升;相反的,若陰極得不到反應所需的氫離子數量,就算收集到很多電子,對電池的效率也不會有什麼改變。
為了深入探討氫離子在其間擴散的問題,本文藉由分子動力學模擬的方法,觀察氫離子在初期產生時的變化情形,並研究其他分子對其所造成的影響力,最後再根據所得到的分子資訊計算氫離子的擴散性質,並對其擴散現象作深入的討論。更希望能藉此找出增進氫離子傳遞現象的方法。
本論文與其它研究的不同處,在於現今的研究大都是以微機電的技術,經由做實驗的方式得到整體的巨觀表現,不過本文的研究方式卻是切入到微觀的角度,直接觀察氫離子在電池陽極觸媒端的運動行為。對於目前生物燃料電池的研究而言,這是屬於比較創新的概念,且研究的方法也為首創。
The thesis investigates the proton diffusion phenomenon between anode catalyst and anode electrode in enzymatic biofuel cell. The difference of enzymatic biofuel cell and conventional fuel cell is the catalyst. Biofuel uses bio-molecule as catalyst instead of the noble metal like platinum. Proton and electrons are easy to dissipate in solution because the electrode and catalyst are immersing in neutral electrolyte solution. It is an important segment to collect proton and electrons effectively. In order to investigate the diffusion phenomenon of proton between electrode and catalyst, the molecular dynamics simulations was employed to observe the motions of proton at anode and the effects of other molecules was also studied. At last, the diffusivity and conductivity of proton was estimated from the molecular information obtained after simulations.
[1] Davis, J. B., and Yarbrough, H. F. Jr., 1962, “Preliminary Experiments on a Microbial Fuel Cell”, Science, 137, pp. 615-616.
[2] Davis, J. B., and Yarbrough, H. F. Jr., 1962, “Preliminary Experiments on a Microbial Fuel Cell”, Science, 137, pp. 615-616.
[3] Katz, E., Willner, I. , and Kotlyar, A. B., 1999, “A non- compartmentalized glucose | O2 biofuel cell by bioengineered electrode surfaces”, Journal of Electroanalytical Chemistry, pp. 64-68.
[4] Tsujimura, S., Fujita, M., and Tatsumi, H., 2001, “Bioelectrocatalysis- based dihydrogen/dioxygen fuel cell operating at physiological PH”, Physical Chemistry Chemical Physics, pp. 1331-1335.
[5] Chen, T., Barton, S. C., and Binyamin, G., 2001, “A Miniature Biofuel Cell”, Journal of the American Chemical Society, pp. 8630-8631.
[6] Mano, N., Mao, F., and Shin, W., 2003, “A Miniature Biofuel Cell Operating at 0.78 V”, The Royal Society of Chemistry, pp. 518-519.
[7] Mano, M., Mao, F., and Heller, A., 2003, “Characteristics of a Miniature Compartment-less Glucose- O2 Biofuel Cell and its Operation in a Living Plant”, Journal of the American Chemical Society, pp. 6588-6594.
[8] Soukharev, V., Mano, N., and Heller, A., 2004, “A Four Electron O2- Electroreduction Biocatalyst Superior to Platinum and a Biofuel Cell Operating at 0.88V”, Journal of the American Chemical Society, pp. 8368-8369.
[9] Vielstich, W., Lamm, A., and Gasteiger, H., 2003, “Handbook of Fuel Cells: Fundamentals, Technology and Applications”, Chapter 21, Wiley Europe.
[10] Barton, S. C., Gallaway, J., and Atanassov, P., 2004, “Enzymatic Biofuel Cells for Implantable and Microscale Devices”, Journal of the American Chemical Society, (review).
[11] Mayo, S. L., Olafson, B. D., and Goddard, W. D., 1990, “DREIDING: A Generic Force FIELD for Molecular Simulations”, Journal of Physics Chemistry, 94, pp. 8897-8909.
[12] Agrawal, P. M., Rice, B. M., and Thompson, D. L., 2002, ”Predicting trends in rate parameters for self-diffusion on FCC metal surfaces”, Surface Science, 515, pp. 21-35.
[13] Ennari, J., Elomaa, M., and Sundholm, F., 1999, “Modelling a Polyelectrolyte system in water to estimate the ion-conductivity”, Polymer, 40, pp. 5035-5041.
[14] Haile, J. M., 1992, “Molecular Dynamics Simulation elementary methods”, JOHN WILEY & SONS.