簡易檢索 / 詳目顯示

研究生: 賴冠宇
Lai, Kuan-Yu
論文名稱: 基於良率與時間約束之三維堆疊晶片備用矽穿孔分配
Yield and Timing Constrained Spare TSV Assignment for Three-Dimensional Integrated Circuits
指導教授: 張世杰
Chang, Shih-Chieh
口試委員: 黃婷婷
Hwang, TingTing
吳文慶
Wu, Wen-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 46
中文關鍵詞: 矽穿孔
外文關鍵詞: TSV
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽穿孔技術 (Through Silicon Via, TSV) 是在三維晶片中的關鍵技術。然而,他可能有許多可靠度的問題。有許多文獻提出不同的容錯機制,用來提高良率,但是卻擁有過高的面積開銷成本。在本論文中,我們研究讓一組TSV只放一個備用TSV,在良率有一定以上並且符合時間約束的情況下,最優化備用TSV的數量使得增加的面積開銷最小。但是我們發現,這樣的問題可以通過約束圖分解證明此問題的時間複雜度是NP困難,所以我們用一種有效的啟發式搜索來解決這個問題。實驗證明我們的啟發式搜索比起其他啟發式搜索在同樣容錯機制下能夠減少最大62%的開銷


    In three-dimensional integrated circuits (3D ICs), Through Silicon Via (TSV) is a critical enabling technique to provide vertical connections. However, it may suffer from many reliability issues such as undercut, misalignment or random open defects. Various fault-tolerance mechanisms have been proposed in literature to improve yield, at the cost of significant area overhead. In this paper, we focus on the structure that uses one spare TSV for a group of original TSVs, and study the optimal assignment of spare TSVs under yield and timing constraints to minimize the total area overhead. We show that such problem can be modeled as constrained graph decomposition problem, and prove its NP-hardness. Two efficient heuristics are further developed to address this problem. Experimental results show that under the same yield and timing constraints, our heuristic can reduce the area overhead induced by the fault-tolerance mechanisms by up to 62%, compared with a seemingly more intuitive nearest-neighbor based heuristic.

    List of Contents List of Contents VI List of Figures VII List of Tables VIII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 BACKGROUND AND MOTIVATION 5 CHAPTER 3 PPOBLEM FORMULATION 8 3.1 Chip Yield Constraint 15 3.2 Timing Constraint 15 CHAPTER 4 ALGORITHM 15 4.1 Symmetric distance constraint 15 4.1.1 Problem Modeling of Symmetry distance Constraint 15 4.1.2 Proof of NP-Hardness 19 4.1.3 Our Heuristic 24 4.2 Asymmetric distance constraint 31 4.2.1 Problem Modeling of asymmetric distance constrain 31 4.2.2 Our Heuristic 33 CHAPTER 5 EXPERIMENTAL RESULTS 38 CHAPTER 6 CONCLUSIONS 42 REFERENCES 43

    [1] J. Burns, L. Mcllrath, C. Keast, C. Lewis, A. Loomis, K. Warner and P. Wyatt, “Three-Dimensional Integrated Circuit for Low Power, High-Bandwidth Systems on a Chip,” in Proc. of IEEE International Solid-State Circuits Conference (ISSCC), pp. 268-269, Feb., 2001.
    [2] M. Cho, H. Ren, H. Xiang, R. Puri, “History-based VLSI legalization using network flow”, in Proc. of ACM/IEEE Design Automation Conference (DAC), pp. 286-291, June 2010.
    [3] J. Cong, G. Luo, Y. Shi, “Thermal-aware cell and through-silicon-via co-placement for 3D ICs”, in Proc. of ACM/EDAC/IEEE Design Automation Conference (DAC), pp.670-675, June 2011.
    [4] W. R. Davis, J. Wilson, S. Mick, davis demystifying 3D et al., “Demistifying 3D ICs: The Pros and Cons of Going Vertical,” IEEE Design Test of Computer, vol. 22, no. 6, pp. 498-510, Nov./Dec., 2005.
    [5] J. Edmonds, “Paths, trees, and flowers”, Canadian Journal of mathematics, 17, pp.449-467, 1965.
    [6] R. Glang, “Deffect size distrubution in VLSI chips”, in Proc. of International Conference on Microelectronic Test Structures (ICMTS), pp.57-60, March 1990.
    [7] A.-C. Hsieh, T.-T. Huang, M.-T. Chang, M.-H. Tsai, C.-M. Tseng and H.-C. Li, “TSV redundancy: architecture and design issues in 3D IC”, in Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.166-171, March 2010.
    [8] H.-Y. Huang, Y.-S. Huang and C.-L. Hsu, “Built-in self-test/repair scheme for TSV-based three-dimensional integrated circuits”, in Proc. of IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp.56-59, Dec. 2010.
    [9] L. Jiang, Q. Xu, and B. Eklow, “On effective TSV repair for 3D-stacked ICs”, in Proc. of Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.793-798, March 2012
    [10] M. Jung, J. Mitra, David Z. Pan, and S. K. Lim, “TSV stress-aware full-chip mechanical reliability analysis and optimization for 3D IC”, in Proc. of Design Automation Conference (DAC), pp. 188-193, June 2011.
    [11] Uksong Kang and et al., “8Gb 3D DDR3 DRAM using through-silicon-via technology”, in Proc. of IEEE International Solid-State Circuits Conference (ISSCC), pp130-131, 131a, Feb. 2009.
    [12] H. Kim, K. Athikulwongse, and S. K. Lim, “A study of Through-Silicon-Via impact on the 3D stacked IC layout”, in Proc. of Design Automation Conference (DAC), pp. 674-680, Nov. 2009.
    [13] H. Kim, S. Mukhopadhyay, and S. K. Lim, “TSV-aware interconnect length and power prediction for 3D stacked ICs”, in Proc. of International Interconnect Technology Conference (IITC), pp.26-28, June 2009.
    [14] D. H. Kim, R. O. Topaloglu, and S. K. Lim, “TSV density-driven global placement for 3D stacked ICs”, in Proc. of International SoC Design Conference (ISOCC), pp.135-138, Nov. 2011
    [15] D. H. Kim, S. K. Lim and et al., “3D-MAPS: 3D Massively parallel processor with stacked memory”, in Proc of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 188-190, Feb. 2012
    [16] M. Laisne, K. Arabi and T. Petrov, “System and methods utilizing redundancy in semiconductor chip interconnects”, United State Patent Application Publication. US 2010/0060310 A1 (Mar. 11, 2010).
    [17] J. H. Lau, “TSV manufacturing yield and hidden costs for 3D IC integration”, in Proc. of Electronic Components and Technology Conference (ECTC), pp. 1031-1042, June 2010.
    [18] I. Loi, S. Mitra, T. H. Lee, S. Fujita and L. Benini, “A low-overhead fault tolerance scheme for TSV-based 3D network on chip links”, in Proc. of IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp.598-602, Nov. 2008.
    [19] C.-L Lung, Y.-S. Su, S.-H Huang, Yiyu Shi, and S.-C. Chang, “Fault-Tolerant 3D Clock Network”, in Proc. of ACM/EDAC/IEEE Design Automation Conference (DAC), pp.645-651, June 2011.
    [20] B. Swinnen, W. Ruythooren, P. D. M. L. Bogaerts, L. Carbonell, K. D. Munck, B. Eyckens, S. Stoukatch, Tezcan, D. Sabuncuoglu, Z. Tokei, J. Vaes, J. V. Aelst, and E. Beyne, “3D integration by cu-cu thermocompression bonding of extremely thinned bulk-si die containing 10 μm pitch through-si vias”, in Proc. of International Electron Devices Meeting (IEDM), pp. 1-4, Dec. 2006.
    [21] D. Velenis, E. J. Marinissen and E. Beyne, “Cost effectiveness of 3D integration options”, in Proc. of IEEE International 3D Systems Integration Conference (3DIC), pp.1-6, Nov. 2010.
    [22] Ye and K. Chakrabarty, “TSV open defects in 3D integrated circuits: Characterization, test, and optimal spare allocation”, in Proc. of ACM/IEEE Design Automation Conference (DAC), pp. 1024-1030, June 2012.
    [23] Y. Zhao, S. Khursheed, and B. M. Al-Hashimi, “Cost-Effective TSV Grouping for Yield Improvement of 3D-ICs”, in Proc. of Asian Test Symposium (ATS), pp.201-206, Nov. 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE