研究生: |
張文馨 Chang, Wen Hsin |
---|---|
論文名稱: |
用於終極互補式金氧半電晶體之 氮化鎵基板上之高介電係數單晶氧化釓閘極層與砷化鎵基反轉通道金氧半電晶體 High κ dielectric single crystal Gd2O3 on GaN and GaAs-based inversion-channel MOSFETs for ultimate CMOS |
指導教授: |
洪銘輝
黃倉秀 |
口試委員: |
洪銘輝
黃倉秀 徐嘉鴻 郭瑞年 何家驊 郭治群 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 118 |
中文關鍵詞: | 分子束磊晶 、高介電係數介電層 、砷化鎵 、金氧半電晶體 、歐姆接觸 |
外文關鍵詞: | Molecular Beam Epitaxy, High k dielectric, GaAs, MOSFET, Ohmic contact |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於砷化鎵基材料擁有很高的電子遷移率,目前使用高介電係數氧化層來製作三五族反轉通道金氧半電晶體受到很高的注目,以達到超越10奈米互補式金氧半電晶體的需求。其中最挑戰的議題之一,就是如何降低三五族電晶體的寄生電阻,在元件持續微縮下,接觸電阻將會是主導元件特性的關鍵。
藉由氧化鋁及氧化釓的雙層介電層,自我對準反轉通道砷化銦鎵金氧半電晶體已成功實現,於閘極長度4 μm的元件中,展示出最大汲極電流 9.5 μA/μm 以及最大轉移電導 3.9 μS/μm。這樣的元件特性能夠匹配使用原子層化學氣相沈積技術成長的氧化鋁介電層所製作的砷化鎵金氧半電晶體,無論是在砷化鎵 (001)或是砷化鎵 (111)A基板上。
除了三五族元件的製作和分析,非金的三五族歐姆接觸系統(Pd/Ge/Ti/Pt)同樣的也被研究。很低的接觸電阻約 1×10-7 Ω-cm2 被實現在高摻雜濃度的砷化銦鎵基板上,能夠被及時地利用在超越矽的互補式金氧半電晶體的製程中。此外,藉由原子層化學氣相沈積技術成長的氮化鈦,具有高溫穩定性(~ 900 ºC)的氮化鈦雙層金屬閘極層,也同時被實現,對於應用在未來自我對準反轉通道砷化銦鎵金氧半電晶體相當具有優勢。
The quest for technologies beyond the 10 nm node CMOS has now driven efforts in fabricating inversion-channel III-V MOSFETs with high κ dielectrics, owing to the high electron mobility in GaAs-based materials. One of the most challenging issues for realizing the high-performance GaAs-based inversion-channel MOSFETs is to decrease the parasitic series resistance, of which the contact resistance is the dominant component in the highly scaled devices.
In this dissertation, we demonstrate the device performance of a 4- μm-gate-length self-aligned inversion-channel In0.2Ga0.8As MOSFET on GaAs (100) substrate using a gate dielectric of Al2O3 (3 nm thick)/GGO (8 nm thick) with a maximum drain current of 9.5 μA/μm, and an extrinsic maximum transconductance of 3.9 μS/μm. The device performances are compared favorably with those of other inversion-channel GaAs MOSFETs on GaAs (100), and also of the device on GaAs (111)A substrates using atomic layer deposited (ALD) Al2O3 as a gate dielectric.
Except for the In0.2Ga0.8As inversion-channel MOSFETs, non-gold ohmic contacts of Pd/Ge/Ti/Pt have been investigated on highly doped molecular beam epitaxy (MBE) grown GaAs, In0.2Ga0.8As and In0.53Ga0.47As epilayers and a low contact resistance of 1×10-7 Ω-cm2 has been achevied on In0.53Ga0.47As, as a feasibility assessment in using these semiconductors for the post Si CMOS. In addition, high thermal stability (~900 ºC) TiN dual metal gate has been obtained by inserting an ALD-TiN layer between gate dielectric and sputtered-TiN, which is very promising for applying to self-aligned inversion-channel GaAs-based MOSFETs.
[1] In An Overview: Physics Through the 1990's, The National Academies Press (1986).
[2] J. Kwo, M. Hong and S. Nakahara, “Growth of rare earth single crystals by molecular beam epitaxy: The epitaxial relationship between hcp rare earth and bcc niobium” Appl. Phys. Lett. 49, 319-321 (1986).
[3] S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes” Appl. Phys. Lett. 64, 1687-1689 (1994).
[4] T. Egawa, T, B. Zhang and H. Ishikawa, “High Performance of InGaN LEDs on (111) Silicon Substrates Grown by MOCVD” IEEE Electron Device Lett. 26, 169-171 (2005).
[5] S. Iwakami, O. Machida, M. Yanagihara, T. Ehara, N. Kaneko, H. Goto and A. Iwabuchi, “20 mΩ, 750 V High-Power AlGaN/GaN Heterostructure Field-Effect Transistors on Si Substrate” Jpn. J. Appl. Phys. 46, L587-L589 (2007).
[6] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts and A. M. Sergent, “Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation” Science 283, 1897-1900 (1999).
[7] T. Nozaki, A. Hirohata, N. Tezuka, S. Sugimoto and K. Inomata, “Bias voltage effect on tunnel magnetoresistance in fully epitaxial MgO double-barrier magnetic tunnel junctions” Appl. Phys. Lett. 86, 082501 (2005).
[8] B. H. Lin, W. R. Liu, S. Yang, C. C. Kuo, C. -H. Hsu, W. F. Hsieh, W. C. Lee, Y. J. Lee, M. Hong and J. Kwo, “The Growth of an Epitaxial ZnO Film on Si(111) with a Gd2O3(Ga2O3) Buffer Layer” Cryst. Growth Des. 11, 2846-2851 (2011).
[9] F. Ren, M. W. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, Y. K. Chen and A. Y. Cho, “Enhancement-Mode p-Channel GaAs MOSFETs on Semi-Insulating Substrates” in Tech. Dig. - In. Electron Devices Mett. 943-945 (1996).
[10] K. P. Chen, S. F. Yoon, T. K. Ng, H. Tanoto, K. L. Lew, C. L. Dohrman and E. A. Fitzgerald, “Characterization of GaAs grown on SiGe/Si graded substrates using p-n junction diodes” J. Appl. Phys. 104, 073710 (2008).
[11] D. Choi, E. Kim, P. C. McIntyre and J. S. Harris, “Molecular-beam epitaxial growth of III–V semiconductors on Ge/Si for metal-oxide-semiconductor device fabrication” Appl. Phys. Lett. 92, 203502 (2008).
[12] M. Deura, T. Hoshii, T. Yamamoto, Y. Ikuhara, M. Takenaka, S. Takagi, Y. Nakano and M. Sugiyama, “Dislocation-Free InGaAs on Si(111) Using Micro-Channel Selective-Area Metalorganic Vapor Phase Epitaxy”Appl. Phys. Exp. 2, 011101 (2009).
[13] K. J. Kuhn, “Considerations for Ultimate CMOS Scaling” IEEE Trans. Electron Devices 59, 1813-1828 (2012).
[14] International Technology Roadmap for Semiconductor 2012 edition. Available: http://www.itrs.net/Links/2012ITRS/Home2012.htm
[15] Michel Houssa, In High-κ Gate Dielectrics, Talyor & Francis (2003).
[16] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt and G. Timp, “The electronic structure at the atomic scale of ultrathin gate oxides” Nature 399, 758-761 (1999).
[17] D. J. Frank, “Power-constrained CMOS scaling limit” IBM J. Res. & Dev. 46, 235-244 (2002)
[18] M. Bohr, “Intel's 90 nm Technology: Moore's Law and More”(2002).
[19] C. Auth, M. Buehler, A. Cappellani, C. H. Choi, G. Ding, W. Han, S. Joshi, B. McIntyre, M. Prince, P. Ranade, J. Stanford and C. Thomas, “45nm High-k+Metal Gate Strain-Enhanced Transistors” Intel Technology Journal 12, 77-85 (2008).
[20] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, et al., “A 45nm logic technology with high-κ plus metal gate transistors strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging” in Tech. Dig. - In. Electron Devices Mett. 247-250 (2007)
[21] Intel. “Intel 22nm Technology page.” Available: http://www.intel.com/content/www/us/en/silicon-innovations/intel-22nm-technology.html
[22] M. Radosavljevic, G. Dewey, D. Basu, J. Boardman, B. Chu-Kung, J. M. Fastenau, S. Kabehie, J. Kavalieros, V. Le, W. K. Liu, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, L. Pan, R. Pillarisetty, W. Rachmady, U. Shah, H. W. Then and R.Chau, “Electrostatics Improvement in 3-D Tri-gate Over Ultra-Thin Body Planar InGaAs Quantum Well Field Effect Transistors with High-K Gate Dielectric and Scaled Gate-to-Drain/Gate-to-Source Separation” in Tech. Dig. - In. Electron Devices Mett. 765-768 (2011)
[23] NSM Archive-Physical Properties of Semiconductors. Available: http://www.ioffe.rssi.ru/SVA/NSM/Semicond/
[24] A. Lubow, S. I. Beigi and T. P. Ma, “Comparison of drive currents in metal-oxide-semiconductor field-effect-transistors made of Si, Ge, GaAs, InGaAs , and InAs channels” Appl. Phys. Lett. 96, 122105 (2010).
[25] F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, H. S. Tsai, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen and A. Y. Cho, “Ga2O3 (Gd2O3)/InGaAs Enhancement-Mode n-Channel MOSFET’s” IEEE Electron Device Lett. 19, 309-311 (1998).
[26] T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai and Y. C. Wang “High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd2O3) as gate dielectrics” Appl. Phys. Lett. 93, 033516 (2008).
[27] P. Chang, H. C. Chiu, T. D. Lin, M. L. Huang, W. H. Chang, S. Y. Wu, K. H. Wu, M. Hong and J. Kwo, “Self-Aligned Inversion-Channel In0.53Ga0.47As Metal-Oxide-Semiconductor Field-Effect Transistors with In-situ Deposited Al2O3/Y2O3 as Gate Dielectrics” Appl. Phys. Exp. 4, 114202 (2011).
[28] M. Hong, Y. K. Chen, M. C. Wu, J. M. Vandenberg, S. N. G. Chu, J. P. Mannaerts and M. A. Chin, “Periodic index separate confinement heterostructure InGaAs/AlGaAs quantum well lasers grown by temperature modulation molecular beam epitaxy” Appl. Phys. Lett. 61, 43-45 (1992).
[29] P. Saunier, R. J. Matyi and Bradshaw, “A double heterojunction-doped channel pseudomorphic power HEMT with a power density of 0.85 W/mm at 55 GHz” IEEE Electron Device Lett. 9, 397–398 (1988).
[30] T. Schweizer, K. Kohler, W. Rothemund and P. Ganser, “Highly anisotropic electron mobilities of GaAs/In0.2Ga0.8As/Al0.3Ga0.7As inverted high electron mobility transistor structures”Appl. Phys. Lett. 59, 2736-2738 (1991).
[31] W. S. Lour, M. K. Tsai, K. C. Chen, Y. W. Wu, S. W. Tan and Y. J. Yang, “Dual-gate In0.5Ga0.5P/In0.2Ga0.8As pseudomorphic high electron mobility transistors with high linearity and variable gate-voltage swing” Semicond. Sci. Tech. 16, 826-830, (2001)
[32] Y. S. Lin, T. P. Sun and S. S. Lu, “Ga0.51In0.49P/In0.15Ga0.85As/GaAs Pseudomorphic Doped-Channel FET with High-Current Density and High-Breakdown Voltage” IEEE Electron Device Lett. 18, 150-153 (1997).
[33] Y. J. Lee, C. H. Lee, L. T. Tung, T. H. Chiang, T. Y. Lai, J. Kwo, C.-H. Hsu and M. Hong, “Al2O3/Ga2O3(Gd2O3) passivation on In0.20Ga0.80As/GaAs-structural intactness with high-temperature annealing” J. Phys. D 43, 135101 (2010).
[34] P. Roblin and H. Rohdin, In High-Speed Heterostructure Deviecs, Cambridge University Press (2002).
[35] C. P. Chen, T. D. Lin, Y. J. Lee, Y. C. Chang, M. Hong and J. Kwo, “Self-aligned inversion n-channel In0.2Ga0.8As/GaAs metal–oxide–semiconductor field-effect-transistors with TiN gate and Ga2O3(Gd2O3) dielectric” Solid-State Electron. 52, 1615-1618 (2008).
[36] T. W. Pi, H. Y. Lin, Y. T. Liu, T. D. Lin, G. K. Wertheim, J. Kwo and M. Hong, “Atom-to-atom interactions for atomic layer deposition of trimethylaluminum on Ga-rich GaAs(001)-4×6 and As-rich GaAs(001)-2×4 surfaces: a synchrotron radiation photoemission study” Nanoscale Res. Lett. 8, 169 (2013).
[37] A. Ohtake, J. Nakamura, T. Komura, T. Hanada, T. Yao, H. Kuramochi and M. Ozeki, “Surface structures of GaAs{111}A,B-(2×2)” Phys. Rev. B 64, 045318 (2001).
[38] F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen and A. Y. Cho, “Demonstration of enhancement-mdoe p- and n-channel GaAs MOSFET with Ga2O3(Gd2O3) as gate oxide” Solid-State Electron. 41, 1751-1753, (1997).
[39] Y. Xuan, H. C. Lin, P. D. Ye and G. D. Wilk, “Capacitance-voltage studies on enhancement-mode InGaAs metal oxide semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric” Appl. Phys. Lett. 88, 263518, (2006).
[40] Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, J. S. Weiner, Y. K. Chen and A. Y. Cho, “Compound Semiconductor MOSFET's Using (Ga,Gd)2O3 as Gate Dielectric” Mat. Res. Soc. Symp. Proc. 573, 219-225, (1999).
[41] Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen and P. D. Ye “Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited Al2O3 as Gate Dielectric” IEEE Electron Device Lett. 28, 935-938, (2007).
[42] H. C. Chin, M. Zhu, G. S. Samudra and Y. C. Yeo, “n-Channel GaAs MOSFET with TaN/HfAlO Gate Stack Formed Using In Situ Vacuum Anneal and Silane Passivation” J. Electronchem. Soc. 155, H464-H468 (2008).
[43] I. Ok, H. Kim, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao and J. C. Lee, “Self-aligned n-channel GaAs metal–oxide–semiconductor field-effect transistors (MOSFETs) using HfO2 and silicon interface passivation layer: Post-metal annealing optimization” Microelectron. Eng. 86, 291-294 (2009).
[44] F. Gao, S. J. Lee and D. L. Kwong, “Enhancement mode GaAs metal-oxide-semiconductor field-effect-transistor integrated with thin AlN surface passivation layer and silicon/phosphorus coimplanted source/drain” J. Vac. Sci. Technol. B 27, 214-217 (2009).
[45] W. H. Chang, T. H. Chiang, Y. D. Wu, M. Hong, C. A. Lin and J. Kwo, “Self-aligned inversion-channel In0.2Ga0.8As metal-oxide-semiconductor field-effect transistor with molecular beam epitaxy Al2O3/Ga2O3(Gd2O3) as the gate dielectric” J. Vac. Sci. Technol. B 29, 03C122 (2011).
[46] S. J. Pearton, “Ion Implantation in III-V Semiconductor Technology” Int. J. Mod. Phys. B 7, 4687-4761 (1993).
[47] R. S. Bhattacharya, P. P. Pronko and S. C. Ling, “Specific site location of S and Si in ion-implanted GaAs” Appl. Phys. Lett. 42, 880-882 (1983).
[48] R. S. Bhattacharya, A. K. Rai, Y. K. Yeo, P. P. Pronko, S. C. Ling, S. R. Wilson and Y. S. Park, “Si implantation in GaAs” J. Appl. Phys. 54, 2329-2337 (1983).
[49] T. C. Banwell, M. Maenpaa and M-A. Nicolet, “Saturation of Si Activation at High Doping Levels in GaAs” J. Phys. Chem. Solids 44, 507-514 (1983).
[50] C. Y. Ong, K. L. Pey, C. M. Ng, B. S. Ong, C. P. Wong, Z. X. Shen, Z. X. Xing, X. C. Wang, H. Y. Zheng and L. Chan, “A Comparative Study on Si Activation in GaAs Between Laser Annealing and Rapid Thermal Annealing” Electrochem. Solid-State Lett. 13, H200-H202 (2010).
[51] Y. F. Chong, K. L. Pey, A. T. S. Wee, A. See, L. Chan, Y. F. Lu, W. D. Song and L. H. Chua, “Annealing of ultrashallow p+/n junction by 248 nm excimer laser and rapid thermal processing with different preamorphization depths” Appl. Phys. Lett. 76, 3197-3199, (2000).
[52] L. J. Brillson, In Contacts to Semiconductors: Fundamental and Technology, Noyes Publication: Park Ridge, New Jersey, U.S.A. (1993).
[53] K. A. Jones, M. W. Cole, W. Y. Han, D. W. Eckart, K. P. Hilton, M. A. Crouch and B. H. Hughes, “Comparison of PdGeTiPt and NiGeAu ohmic contacts to n-GaAs and PdGeTiPt and TiPd contacts to p+-GaAs” J. Appl. Phys. 82, 1723-1729, (1997).
[54] H. C. Lin, S. Senanayake, K. Y. Cheng, M. Hong, J. Kwo, B. Yang and J. P. Mannaerts, “Optimization of AuGe–Ni–Au Ohmic Contacts for GaAs MOSFETs” IEEE Trans. Electron Devices 50, 880-885 (2003).
[55] T. S. Abhilash, C. R. Kumar and G. Rajaram, “Influence of Nickel layer thickness on the magnetic properties and contact resistance of AuGe/Ni/Au Ohmic contacts to GaAs/AlGaAs heterostructures” J. Phys. D: Appl. Phys. 42, 125104 (2009).
[56] J. W. Lim, J. K. Mun, S. J. An, S. Nam, M. H. Kwak, H. Kim and J. J. Lee, “PdGe-Based Ohmic Contact on n-GaAs with Highly and Poorly Doped Layers” Jpn. J. Appl. Phys. 39, 2546-2549 (2000).
[57] I. H. Kim, “Pd/Ge/Ti/Pt ohmic contact to n-type InGaAs for AlGaAs/GaAs HBT” Mater. Lett. 56, 775-780 (2002).
[58] P. Machac, P. Sajdl and V. Machovic, “Improvement of Ge/Pd/GaAs ohmic contact by In layer” J. Mater. Sci.: Mater. Electron. 18, 621-625 (2007).
[59] A. G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, S. J. Pearton, “A survey of ohmic contacts to III-V compound semiconductors” Thin Solid Films 308-309, 599-606 (1997).
[60] M. Murakami, “Development of refractory ohmic contact materials for gallium arsenide compound semiconductors” Sci. Technol. Adv. Mat. 3, 1-27 (2002).
[61] C. Liao, D. Cheng, C. Cheng, K. Y. Cheng, M. Feng, T. H. Chiang, J. Kwo and M. Hong, “Inversion-channel enhancement-mode GaAs MOSFETs with regrown source and drain contacts” J. Cryst. Growth 311, 1958-1961 (2009).
[62] U. Singisetti, M. A. Wistey, G. J. Burek, A. K. Baraskar, B. J. Thibeault, A. C. Gossard, M. J. W. Rodwell, B. Shin, E. J. Kim, P. C. McIntyre, B. Yu, Y. Yuan, D. Wang, Y. Taur, P. Asbeck and Y. J. Lee, “In0.53Ga0.47As Channel MOSFETs With Self-Aligned InAs Source/Drain Formed by MEE Regrowth” IEEE Electron Device Lett. 30, 1128-1130 (2009).
[63] M. Egard, L. Ohlsson, B. M. Borg, F. Lenrick, R. Wallenberg, L.-E. Wernersson and E. Lind, “High Transconductance Self-Aligned Gate-Last Surface Channel In0.53Ga0.47As MOSFET” in Tech. Dig. - In. Electron Devices Mett. 303-306 (2011)
[64] S. H. Kim, M. Yokoyama, N. Taoka, R. Iida, S. Lee, R. Nakane, Y. Urabe, N. Miyata, T. Yasuda, H. Yamada, N. Fukuhara, M. Hata, M. Takenaka and S. Takagi, “Self-aligned metal Source/Drain InxGa1-xAs n-MOSFETs using Ni-InGaAs alloy” in Tech. Dig. - In. Electron Devices Mett. 596-599 (2010).
[65] X. Zhang, H. Guo, X. Gong, Q. Zhou, Y.-R. Lin, H.-Y. Lin, C.-H. Ko, C. H. Wann and Y.-C. Yeo, “In0.7Ga0.3As Channel n-MOSFET with Self-Aligned Ni–InGaAs Source and Drain” Electrochem. Solid-State Lett. 14, H60-H62 (2011).
[66] S. Kim, M. Yokoyama, N. Taoka, R. Nakane, T. Yasuda, O. Ichikawa, N. Fukuhara, M. Hata, M. Takenaka and S. Takagi, “In0.53Ga0.47As metal-oxide-semiconductor field-effect transistors with self-aligned metal source/drain using Co-InGaAs alloys” Appl. Phys. Lett. 100, 073504 (2012).
[67] R. Oxland, S. W. Chang, X. Li, S. W. Wang, G. Radhakrishnan, W. Priyantha, M. J. H. van Dal, C. H. Hsieh, G. Vellianitis, G. Doornbos, K. Bhuwalka, C. H. Diaz and Y. C. Sun, “An Ultralow-Resistance Ultrashallow Metallic Source/Drain Contact Scheme for III–V NMOS” IEEE Electron Device Lett. 33, 501-503 (2012).
[68] C. P. Chen, Y. J. Lee, Y. C. Chang, Z. K. Yang, M. Hong, J. Kwo, H. Y. Lee and T. S. Lay, “Structural and electrical characteristics of Ga2O3(Gd2O3)/GaAs under high temperature annealing” J. Appl. Phys. 100, 104502 (2006).
[69] K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo and W. Tsai, “1 nm equivalent oxide thickness in Ga2O3(Gd2O3)/In0.2Ga0.8As metal-oxide-semiconductor capacitors” Appl. Phys. Lett. 92, 172904(2008).
[70] M. Xu, K. Xu, R. Contreras, M. Milojevic, T. Shen, O. Koybasi, Y. Q. Wu, R. M. Wallace and P. D. Ye, “New Insight into Fermi-Level Unpinning on GaAs: Impact of Different Surface Orientations” in Tech. Dig. - In. Electron Devices Mett. 865-868 (2009).
[71] M. Xu, Y. Q. Wu, O. Koybasi, T. Shen and P. D. Ye, “Metal-oxide-semiconductor field-effect transistors on GaAs (111)A surface with atomic-layer-deposited Al2O3 as gate dielectrics” Appl. Phys. Lett. 94, 212104 (2009).
[72] H. C. Chiu, L. T. Tung, Y. H. Chang, Y. J. Lee, C. C. Chang, J. Kwo and M. Hong, “Achieving a low interfacial density of states in atomic layer deposited Al2O3 on In0.53Ga0.47As” Appl. Phys. Lett. 93, 202903 (2008).
[73] Y. C. Chang, W. H. Chang, C. Merckling, J. Kwo and M. Hong “Inversion-channel GaAs (100) metal-oxide-semiconductor field-effect transistors using molecular beam deposited Al2O3 as a gate dielectric on different reconstructed surfaces” Appl. Phys. Lett. 102, 093506 (2013).
[74] H. S. Kim, I. Ok, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, Jack C. Lee, J. Oh and P. Majhi, “Inversion-type enhancement-mode HfO2-based GaAs metal-oxide-semiconductor field effect transistors with a thin Ge layer” Appl. Phys. Lett. 92, 032907 (2008).
[75] L. Dong, X. W. Wang, J. Y. Zhang, X. F. Li, R. G. Gordon and P. D. Ye, “GaAs Enhancement-Mode NMOSFETs Enabled by Atomic Layer Epitaxial La1.8Y0.2O3 as Dielectric” IEEE Electron Devices Lett. 34, 487-489 (2013).
[76] M. A. Quevedo-Lopez, S. A. Krishnan, P. D. Kirsch, H. J. Li, J. H. Sim, C. Huffman, J. J. Peterson, B .H. Lee, G. Pant, B. E. Gnade, M. J. Kim, R. M. Wallace, D. Guo, H. Bu and T. P. Ma, “High performance gate first HfSiON dielectric satisfying 45nm node requirements” in Tech. Dig. - In. Electron Devices Mett. 428-431 (2005).
[77] G. Sjöblom, J. Westlinder and J. Olsson, “Investigation of the Thermal Stability of Reactively Sputter-Deposited TiN MOS Gate Electrodes” IEEE Trans. Electron Devices 52, 2349-2352 (2005).
[78] H. Nakashima, Y. Iwamura, K. Sakamoto, D. Wang, K. Hirayama, K. Yamamoto and H. Yang, “Postmetallization annealing effect of TiN-gate Ge metal-oxidesemiconductor capacitor with ultrathin SiO2/GeO2 bilayer passivation” Appl. Phys. Lett. 98, 252102 (2011).
[79] L. P. B. Lima, M. A. Moreira, J. A. Diniz and I. Doi, “Titanium nitride as promising gate electrode for MOS technology” Phys. Status Solidi C 9, 1427-1430 (2012).
[80] J. Westlinder, T. Schram, L. Pantisano, E. Cartier, A. Kerber, G. S. Lujan, J. Olsson and G. Groeseneken, “On the Thermal Stability of Atomic Layer Deposited TiN as Gate Electrode in MOS Devices” IEEE Electron Device Lett. 24, 550-552 (2003).
[81] L. Wu, H. Y. Yu, X. Li, K. L. Pey, J. S. Pan, J. W. Chai, Y. S. Chiu, C. T. Lin, J. H. Xu, H. J. Wann, X. F. Yu, D. Y. Lee, K. Y. Hsu and H. J. Tao, “Thermal stability of TiN metal gate prepared by atomic layer deposition or physical vapor deposition on HfO2 high-K dielectric” Appl. Phys. Lett. 96, 113510 (2010).
[82] Y. L. Jeyachandran, Sa. K. Narayandass, D. Mangalaraj, S. Areva, and J. A. Mielczarski, “Properties of titanium nitride films prepared by direct current magnetron sputtering” Mater. Sci. Eng. A 445/446, 223-236 (2007).
[83] W. H. Chang, P. Chang, T. Y. Lai, Y. J. Lee, J. Kwo, C. -H. Hsu and M. Hong, “Structural Characteristics of Nanometer Thick Gd2O3 Films Grown on GaN (0001)” Cryst. Growth Des. 10, 5117-5122 (2010).
[84] J. Kwo, D. W. Murphy, M. Hong, J. P. Mannaerts, R. L. Opila, R. L. Masaitis and A. M. Sergent, “Passivation of GaAs using gallium-gadolinium oxides” J. Vac. Sci. Technol. B 17, 1294-1296 (1999).
[85] G. Brammertz, A. Alian, D. H. C. Lin, M. Meuris, M. Caymax and W.-E. Wang, “A Combined Interface and Border Trap Model for High-Mobility Substrate Metal–Oxide–Semiconductor Devices Applied to In0.53Ga0.47As and InP Capacitors” IEEE Trans. Electron Devices 58, 3890-3897 (2011).
[86] P. Chang, W. C. Lee, T. D. Lin, C. H. Hsu, J. Kwo and M. Hong, “MBE-Enabling technology beyond Si CMOS” J. Cryst. Growth 323, 511-517 (2011).
[87] M. Hong, D. Vakhshoori, J. P. Mannaerts, F. A. Thiel and J. D. Wynn, “In situ nonalloyed ohmic contacts to p-GaAs” J. Vac. Sci. Technol. B 12, 1047-1049 (1994).
[88] Z. Liliental-Weber, J. Washburn, N. Newman, W. E. Spicer and E. R. Weber, “Morphology of Au/GaAs interfaces” Appl. Phys. Lett. 49, 1514-1516 (1986).
[89] Y. C. Shih, M. Murakami, E. L. Wilkie and A. C. Callegari, “Effect of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs” J. Appl. Phys. 62, 582-590 (1987).
[90] D. R. Collins, D. K. Schroder and C. T. Sah, “Gold Diffusivities in SiO2 and Si Using The MOS structure” Appl. Phys. Lett. 8, 323-325 (1966).
[91] D. R. Collins, “The Effect of Gold on the Properties of the Si-SiO2 System” J. Appl. Phys. 39, 4133-4143 (1968).
[92] T. Sands, E. D. Marshall, and L. C. Wang, “Solid-phase regrowth of compound semiconductors by reaction-driven decomposition of intermediate phases” J. Mater. Res. 3, 914-921 (1988).
[93] P. H. Hao, L. C. Wang, F. Deng, S. S. Lau, and J. Y. Cheng, “On the low resistance Au/Ge/Pd ohmic contact to n-GaAs” J. Appl. Phys. 79, 4211-4215 (1996).
[94] T. D. Lin, P. Chang, Y. D. Wu, H. C. Chiu, J. Kwo, and M. Hong, “Achieving very high drain current of 1.23 mA/μm in a 1-mm-gate-length self-aligned inversion-channel MBE-Al2O3/Ga2O3(Gd2O3)/In0.75Ga0.25As MOSFET” J. Cryst. Growth 323, 518-521 (2011).
[95] Y. G. Chai, R. Chow, and C. E. C. Wood, “The effect of growth conditions on Si incorporation in molecular beam epitaxial GaAs” Appl. Phys. Lett. 39, 800-803 (1981).
[96] M. I. Miah, “Low-temperature annealed ohmic contacts to Si-doped GaAs and contact formation mechanisms” Mater. Chem. Phys. 113, 967-970 (2009).
[97] W. H. Chang, T. H. Chiang, T. D. Lin, Y. H. Chen, K. H. Wu, T. S. Huang, M. Hong and J. Kwo "Optimization of Ohmic metal contacts for advanced GaAs-based CMOS device," J. Vac. Sci. Technol. B 30, 02B123 (2012).
[98] J. W. Lim, J. K. Mun, M. H. Kwak and J. J. Lee, “Performance of Pd/Ge/Au/Pd/Au ohmic contacts and its application to GaAs metal-semiconductor field-effect transistors” Solid-State Electron. 43, 1893-1900 (1999)
[99] J. S. Kwak, J. L. Lee and H. K. Baik, “Improved Uniformity of Contact Resistance in GaAs MESFET Using Pd/Ge/Ti/Au Ohmic Contacts” IEEE Electron Device Lett. 19, 481-483 (1998).
[100] Y. H. Yeh, J. T. Lai and J. Y. Lee, “Low Contact-Resistance and Shallow Pd/Ge Ohmic Contacts to n-In0.53Ga0.47As on InP Substrate Formed by Rapid Thermal Annealing” Jpn. J. Appl. Phys. 35, L1569-L1571 (1996).
[101] Y. H. Chang, C. A. Lin, Y. T. Liu, T. H. Chiang, H. Y. Lin, M. L. Huang, T. D. Lin, T. W. Pi, J. Kwo and M. Hong, “Effective passivation of In0.2Ga0.8As by HfO2 surpassing Al2O3 via in-situ atomic layer deposition” Appl. Phys. Lett. 101, 172104 (2012).
[102] Y. D. Wu, T. D. Lin, T. H. Chiang, Y. C. Chang, H. C. Chiu, Y. J. Lee, M. Hong, C.A Lin and J. Kwo, “Engineering of threshold voltages in molecular beam epitaxy-grown Al2O3/Ga2O3(Gd2O3) / In0.2Ga0.8As” J. Vac. Sci. Technol. B 28, C3H10 (2010).