簡易檢索 / 詳目顯示

研究生: 拉古帕堤
Ragupathi, Ayyakkannu
論文名稱: I. 利用臭氧及紫外光行成氫氧自由基進行C–H 官能化和 含氯化合物的分解 II. 可見光驅動銅催化C–N 偶合反應
I. Hydroxyl Radical Mediated Oxidative C–H Functionalization and Destruction of Chlorinated Compounds by Ozone and UV light II. Visible–Light Induced Copper Catalyzed C–N Coupling Reactions
指導教授: 黃國柱
Hwang, Kuo-Chu
口試委員: 鄭建鴻, 劉瑞雄
Chien-Hong, Cheng, Rai-Shung Liu
孫仲銘
Chung-Ming, Sun
謝仁傑
Jen-Chieh, Hsieh
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 376
中文關鍵詞: 臭氧可見光C-N耦合分子氧C-H活化多組分反應
外文關鍵詞: Ozone, Visible Light, C-N Coupling, Molecular oxygen, C-H activation, Multicomponent Reaction
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在合成許多具有價值的分子的過稱中,一步驟官能基轉換是一個重要的步驟,其中包含C-H鍵轉變成C–S、C–C、C–N和C–O鍵,,因此在本篇論文當中,第一章節中探討以氫氧自由基作為氧化劑之弱酸性α-C–H鍵官能基化,特別是:鹵烷、醇、醚、酮及其他複雜分子,還有含氯的有機污物和殺蟲劑。第二到四章節中,使用氯化亞銅作為催化劑,利用可見光來驅動官能基的轉換。
    第一章A、B部分:
    在有機合成中,飽和碳氫化合物選擇性的C–H 鍵官能基化是科學家用來假設新的化學鍵產生,一步驟C–H 鍵轉換成 C–S、C–C、C–N及 C–O鍵更是重要的方法用來合成許多高價值的分子。一般來說,已經有需多文獻使用過渡金屬(如鈀、鉑、銅、金及銠)在高溫下催化C–H 鍵官能基化,但是此方法沒有辦法在室溫下進行實驗室/工業規模的酸、乙醚及內酯類的合成反應。氫氧自由基是一種普遍存在環境中(包含生物系統、多種污染物、大氣及水中)的分子,此外,由於氫和氧原子之強大的作用力,使得氫氧自由基具有很強的氧化力來氧化有機及無機的化合物。在環境科學中,氫氧自由基常被用來分解揮發性有機化合物(VOCs),因此成為環境科學研究中的主軸。過去氫氧自由基的反應主要多在氣相以及水相中,然而在有機相中的反應(如飽和鹵烷、醇、醚及酮類)鮮少被討論。在第一章節A部分中,探討弱酸性的CH 鍵官能基化,特別是和鹵烷、醇、醚及酮類還有其他複雜分子,我們使用臭氧/紫外光/乙腈/水的組合在室溫下產生氫氧自由基,能夠得到高產率的氧化產物。此方法能夠在室溫下進行實驗室/工廠規模的酯類/內酯類的合成,且符合綠色化學及低成本的合成策略。

    環境科學領域中,持久性有機污染物(Persistent organic pollutants, POPs)已經被關注超過一個世紀,由於它們具有對環境有長久性的傷害及生物累積導致內分泌的干擾,其中包含在食物鏈中、水、空氣、土壤及人體中的藥物和診斷殘留物。大部分的持久性有機污染物都具有鹵素官能基,主要含有氯,而 C–Cl鍵得穩定性很高,尤其是具有許多氯取代基的化合物,而含氯取代基芳香烴化合穩定性又比具氯取代基脂肪族化合物來得高。許多含氯的持久性有機污染物已經被國際組織關注,Stockholm Convention在聯合國環境署的協助下列出了12個含氯持久性有機污染物,其中包含戴奧辛以及呋喃(polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, PCDD/Fs)、多氯聯苯(PCBs)、六氯苯(HCB),許多有機氯化物被用來作為殺蟲劑:滴滴涕(DDT)、氯丹、毒殺芬、狄氏劑、艾氏劑、異狄氏劑、七氯及滅蟻樂。由於這12種持久性有機污染物對環境具有污染和毒性因此備受 Stockholm Convention關注,已有不少文獻研究不同條件下降解此類有機氯化物的殺蟲劑及污染物,包含使用過度金屬、強氧化劑、高溫(> 200 oC 高至1200 oC)、生物降解、長時間反應和氣相反應。儘管許多降解氯化物的方法已被探討,但是仍然不符合環境友善。
    在第一章節B部分中,我們利用乙腈/水/紫外光在室溫的條件下產生氫氧自由基,用以直接氧化的方法來降解簡單的有機氯化物以及一些POPs例如:DDT和戴奧辛。此降解方法較為“綠色”和低成本,且能夠得到高產率高利用價值的產物。

    第二章~第四章:
    使用低瓦數可見光催化簡單且容易取得的起始物是合成技術中的關鍵,因此可見光驅動的催化劑(Ru或Ir)經由單電子轉移。近來銅的錯合物被用來作為許多耦合反應的光還原劑,例如:C–C、C–N、C–S和C–O交叉耦合反應等,先前我們曾提到氯化亞銅在可見光的驅動下可以有下的催化C–C/N 交叉耦合反應和C–H環化反應。我們預期乙炔銅(I)在可見光驅動及氧化劑(例如:O2或 benzoquinone)的輔助下能夠進行單電子轉移並引發耦合反應,我們在此致力於研究此類型反應,本論文第二章到第四章,將探討使用可見光及氯化亞銅催化末端炔和芳香胺的C–N 耦合反應,在此沒有使用貴金屬離子化合物和強氧化劑。詳細的反應圖表將會在每個章節下介紹。
    第二章 利用可見光誘導銅(I)進行C≡C bond裂解,催化2-aminopyridine與末端炔的氧化C-N耦合反應

    第三章 室溫下利用可見光誘導銅(I)催化Ynamides/Ynamines的Aerobic Oxidation合成α-Ketoimides/α-Ketoamides

    第四章 室溫下利用可見光誘導銅(I)催化 Anilines、Terminal alkynes、Benzoquinones進行多成份耦合反應,一步驟合成多取代的α-Amino aldehyde


    ABSTRACT
    The functionalization of C–H bonds into C–S, C–C, C–N, and C–O is a topic of great importance for the synthesis of value added molecules via one step functional group transformations. In this regard, the present thesis has described four chapters; the first chapter focused on oxidative C–H bond functionalization of weak acidic α-C–H bonds especially, alkyl halides, alcohols, ethers, ketones and complicated molecules and chlorinated organic pollutants, pesticides to oxidized products by utilizing hydroxyl radical (•OH) as an oxidant. In the chapters 2-4, visible light mediated organic functional group transformations using simple copper (I) chloride as catalyst has been described.

    Chapter 1A and 1B:
    In organic synthesis, the selective C–H bond functionalization of saturated hydrocarbons is a class of reactions that could inspire the chemists to hypothesis new chemical bonds. In particular, the functionalization of C–H bonds into C–S, C–C, C–N, and C–O is a topic of great importance for the synthesis of value added molecules via one step functional group transformations. In general, many of the oxidative C–H functionalization has been demonstrated using transition metal catalysts (Pd, Cu, Pt, Au and Rh), stoichiometric amount of oxidants and high temperature reactions, but most of the methods fail to produce laboratory/industrials scale oxidations products, for the preparation of acids, esters/lactones at room temperature. Hydroxyl radicals (•OH) are ubiquitous in numerous environments including biological systems, various types of pollutants, atmosphere, and natural waters. In addition, in the natural atmosphere, hydroxyl radicals (•OH) have governed the strong oxidizing capacity for many organic and inorganic compounds. It is due to the strong binding of a hydrogen atom with oxygen atom which makes them more reactive species. Furthermore, the pattern of hydroxyl radical (•OH) reactivity is in the direction of many volatile organic compounds (VOCs) in the earth atmosphere and this continues to be a major attention to scientific research area in environmental chemistry. Since, hydroxyl radical (•OH) reactions were studied in gas and aqueous conditions, the reaction of hydroxyl radical (•OH) in organic-aqueous medium is relatively unexplored for saturated alkyl halides, alcohols, ethers and ketones. In chapter 1A, we have found that oxidative C–H bond functionalization of weak acidic α-C–H bonds especially in saturated alkyl halides, alcohols, ethers, ketones and complex organic molecules are oxidized by in-situ generated hydroxyl radicals (•OH) under O3-CH3CN-H2O-UV at room temperature and resulted in moderate to good yields of oxidation products. The current method is green and cost-effective synthetic strategy for laboratory, and industrials scale oxidations, for the preparation of acids, esters/ lactones at room temperature.

    Over a century, in environmental research field, the occurrence of persistent organic pollutants (POPs) has become a major concern and very interesting subject in the field like pharmaceuticals, diagnostic residues, including food chains, water, air, soil, and humans. It is due to their persistency in the environment, long-lived intermediates in numerous organic compounds, and highly bio accumulative nature and their toxic impacts are presented in many endocrine disrupters. POPs are often halogenated and predominately chlorinated. It is due to the chemical stability of C–Cl bond and it is very stable towards hydrolysis especially greater number of chlorine substitutions. Chlorine atom attached to an aromatic (benzene) ring is more stable to hydrolysis than chlorine atom in aliphatic structures. Many chlorinated POPs have been highlighted by national and international organizations; Stockholm Convention endorsed with the assistance of United Nations Environment Program (UNEP) has listed 12 organochlorines POPs-known as the dirty dozen dangerous of POPs. They are dioxins and furans (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, PCDD/Fs); polychlorinated biphenyls (PCBs), hexachlorobenzene (HCB), several organochlorines used as pesticides: dichloro-diphenyl-trichloroethane (DDT), chlordane, toxaphene, dieldrin, aldrin, endrin, heptachlor, and mirex. These 12 POPs are the most important targeted substances by the Stockholm Convention are of immense concern given that they contaminate the environment and are toxic. Many reports has studied the degradation of chlorinated hydrocarbons including lower and higher chlorinated organic compounds of pesticides and pollutants under different conditions, such as transition metal catalyzed degradation, strong basic conditions, high temperature (> 200 oC up to 1200 o C), biodegradation, longer reaction time and gas phase reaction. Despite many strategies has been discussed degradation of chlorinated compounds at different conditions, which is not an environment-friendly, identify any products and greener approach to afford other useful oxidized products. In chapter 1B, we described direct and oxidative degradation of simple chlorinated organic compounds and some POPs such as DDT, dioxins, are explored via in-situ generation of hydroxyl radical (•OH) under CH3CN-H2O-UV at room temperature. This method is novel green and cost-effective synthetic strategy for the destruction of chlorinated organic compounds of pollutants and pesticides. This updates of oxidative destruction method afford other useful products with good yields.

    Chapters 2-4:
    The development of new chemical transformations by employing simple and readily available feedstocks using low energy visible light irradiation is of great importance in synthetic chemistry. In this regard, visible-light-activated photoredox catalysis (Ru or Ir) are proven to be a powerful platform for the design and development of valuable new chemical reactions through participation of unique single electron transfer pathways. Recently, photoredox copper-complexes have been proven as inexpensive catalysts for various coupling reactions including C–C, C–N, C–S, and C–O cross-coupling reactions and other reactions. Previously, we reported several examples of visible light-mediated Cu(I)Cl catalyzed efficient C–C/N cross-coupling, and C–H annulation reactions. We anticipate that photoexcited copper(I) acetylide can involve a single electron transfer process with oxidants (e.g., O2 or benzoquinone) and stimulate the essential coupling reaction upon visible light irradiation. During our continuous efforts to the development of new reactions, in chapter 2-4 describes the combination of visible light and simple copper(I) chloride catalyst C–N coupling reactions of terminal alkynes and aryl-amines without any usage of expensive metal, ligand, additives and strong oxidants under visible light-irradiation. The detailed reactions schemes for each chapter have described below.
    Chapter 2: Copper(I)-Catalysed Oxidative C–N Coupling of 2-aminopyridine with Terminal alkynes Featuring a C≡C bond Cleavage Promoted by Visible-Light

    Chapter 3: Visible Light-Mediated Copper(I)-Catalyzed Aerobic Oxidation of Ynamides/Ynamines at Room Temperature: A Sustainable approach to the Synthesis of α-Ketoimides/α-Ketoamides

    Chapter 4: Copper(I) Photoredox-Catalyzed Multicomponent Couplings of Anilines, Terminal alkynes, and Benzoquinones Initiated by Visible Light at Room Temperature: One-step Synthesis of Highly Functionalized Tetra substituted α-Amino aldehyde

    TABLE OF CONTENTS Page ACKNOWLEDGEMENTS I ABSTRACT III LIST OF SCHEMES XVII LIST OF TABLES XXII LIST OF FIGURES XXIV LIST OF PUBLICATIONS XXVI ABBREVIATIONS XXVII CHAPTER-1A: Hydroxyl radical (•OH) Promoted Oxidative C-H Functionalization of Alkyl-halides, Alcohols, Ethers, and Ketones by Ozone and UV-light at Room Temperature: One-step Synthesis of Acids and Esters 1A.1 Introduction 1 1A.2 Introduction to Hydroxyl radical (•OH) 8 1A.3 Results and Discussion 12 1A.4 Conclusions 27 1A.5 Experimental Procedure 27 1A.6 EPR Measurements for Hydroxyl Radicals (•OH) in CH3CN-H2O 28 1A.7 Spectroscopic Data 30 1A.8 References 46 CHAPTER-1B: Oxidative Destruction of Chlorinated Organic Pollutants and Pesticides via in-situ generated Hydroxyl radical (•OH) in CH3CN-H2O by Ozone and UV-light at Room Temperature 1B.1 Introduction 48 1B.2 Biodegradation Methods for Chlorinated Organic Pollutants 51 1B.3 Other Methods for Degradation of Chlorinated Organic Pollutants 53 1B.4 Results and Discussion 55 1B.5 Mechanistic Study 58 1B.6 Conclusions 66 1B.7 Experimental Procedure 66 1B.8 Spectroscopic Data 68 1B.9 References 69 CHAPTER 2: Copper(I)-Catalyzed Oxidative C–N Coupling of 2-aminopyridine with Terminal alkynes Featuring a CC bond Cleavage Promoted by Visible-Light 2.1 Introduction 71 2.2 Results and Discussion 83 2.3 Evaluation of Green Metrics 89 2.4 Mechanistic Control Experiments 90 2.5 Reaction Mechanism 92 2.6 Conclusions 93 2.7 Experimental Procedure 94 2.8 EPR Measurements 94 2.9 UV-visible spectra 97 2.10 Spectroscopic Data 98 2.11 References 109 CHAPTER 3: Visible Light-Mediated Copper(I)-Catalyzed Aerobic Oxidation of Ynamides/Ynamines at Room Temperature: A Sustainable approach to the Synthesis of α-Ketoimides/α-Ketoamides 3.1 Introduction 116 3.2 Classical approach for synthesis of α-Ketoamides/ α-Ketoimides 117 3.3 Results and Discussion 124 3.4 Evaluation of Green Metrics 129 3.5 Reaction Mechanism 133 3.6 Mechanistic Control Experiments 134 3.7 Conclusions 136 3.8 Experimental Procedure 136 3.9 UV-visible spectra 140 3.10 Isothermal Titration Calorimetry (ITC) 141 3.11 Spectroscopic Data 142 3.12 References 159 CHAPTER 4: Copper(I) Photoredox-Catalyzed Multicomponent Couplings of Anilines, Terminal alkynes, and Benzoquinones Initiated by Visible Light at Room Temperature: One-step Synthesis of Highly Functionalized Tetra substituted α-Amino aldehyde 4.1 Introduction 163 4.2 Present Work 173 4.3 Results and Discussion 173 4.4 Mechanistic Control Experiments 181 4.5 Reaction Mechanism 182 4.6 Conclusions 184 4.7 Experimental Procedure 185 4.8 Spectroscopic Data 4.9 UV-visible spectra 187 205 4.10 References 206 X-ray Crystal data, 1H & 13C NMR spectra 210 LIST OF SCHEMES CHAPTER-1A Scheme 1A.1. Metal-catalyzed aliphatic C-H functionalization 1 Scheme 1A.2. Iridium-catalyzed site selective C-H oxidation 2 Scheme 1A.3. Fe-catalyzed site selective C–H oxidation of aliphatic amines 3 Scheme 1A.4. Pd-catalyzed enantioselective allylic C–H oxidation of terminal olefins 4 Scheme 1A.5. Ru-catalyzed oxidation of primary alcohols 5 Scheme 1A.6. Ir-catalyzed oxidation of secondary alcohols 5 Scheme 1A.7. Structure of biologically important lactones 6 Scheme 1A.8. Cu-catalyzed C (CO) −C (alkyl) bond cleavage of ketones 7 Scheme 1A.9. Formation of Hydroxyl radical (•OH) under light irradiation. 9 Scheme 1A.10. C-H bond functionalization of saturated hydrocarbons by a) O (1D) and b) hydroxyl radical (•OH) mechanism 11 Scheme 1A.11. General reaction scheme for oxidative C–H functionalization of different functional groups by in-situ generation of hydroxyl radical by O3-CH3CN-H2O-UV at room temperature 12 Scheme 1A.12. Proposed reaction mechanism for hydroxyl radical (•OH) mediated α-methylene C-H oxidative functionalization of a) cyclopentyl chloride to glutaricacid, b) 1-chloroheptane to heptanoic acid under photo-irradiation in presence of CH3CN-H2O 16 Scheme 1A.13. Hydroxyl radical (•OH) mediated direct oxidative weak α-C-H bond functionalization of different complex organic molecules in the presence of CH3CN-H2O at room temperature. 21 Scheme 1A. 14. Hydroxyl radical (•OH) mediated reaction of (-) ambroxide for the synthesis of sclareolide in the presence of O3-CH3CN-H2O-UVat room temperature 25 CHAPTER-1B Scheme 1B.1. Proposed degradation pathway of 1, 2, 4-TCB by T. Versicolor under aerobic conditions 51 Scheme 1B.2. Pathway of 2-CDD biodegradation by aerobic bacteria 52 Scheme 1B.3. Pathway of 1, 2, 3, 4-TeCDD biodegradation by anaerobic bacteria 53 Scheme 1B.4. General reaction schemes for oxidative destruction of chlorinated compounds, pollutants, and pesticides 54 Scheme 1B.5. A series of control experiments 59 Scheme 1B.6. Proposed mechanism for benzene by Hydroxyl radical (•OH) 60 Scheme 1B.7. Proposed mechanism for chlorobenzene by in-situ generated (•OH) (O3-CH3CN-H2O-UV) 61 Scheme 1B.8. a) Plausible mechanism for 4, 4’-DDE and b) 4, 4’-DDD by (•OH) (O3-CH3CN-H2O-UV) 64 Scheme 1B.9. Plausible mechanism for the destruction of dioxins by (•OH) (O3-CH3CN-H2O-UV) 65 CHAPTER 2 Scheme 2.1. Ru- catalyzed CC triple bond cleavage 71 Scheme 2.2. a) Pd-catalyzed cleavage of C–C triple bond to efficient syntheses of carboxylic esters. b) Reaction mechanism. 72 Scheme 2.3. Au-catalyzed synthesis of tetrazoles from terminal alkynes via C–C triple bond cleavage. 72 Scheme 2.4. Ag-catalyzed synthesis of nitriles from terminal alkynes by C–C triple bond cleavage. 73 Scheme 2.5. Typical routes of amide formation 75 Scheme 2.6. Classical approach for synthesis of pyridyl-amides 77 Scheme 2.7. Cu- catalyzed dehydrogenative cross-coupling of amino pyridines and aldehydes 77 Scheme 2.8. Cu- catalyzed biomimetic synthesis of N-heterocyclic amides from aldehyde 78 Scheme 2.9. Cu- catalyzed biomimetic synthesis of N-heterocyclic amides from aldehyde 78 Scheme 2.10. Proposed reaction mechanism for the synthesis of imidazopyridine 79 Scheme 2.11. Proposed reaction mechanism for the synthesis of imidazopyridine 80 Scheme 2.12. visible light-mediated CuCl catalyzed efficient C–C, C–N cross- coupling and C–H annulation reactions 81 Scheme 2.13. Schematic pathway for previous and present work of transition metal-catalyzed oxidative coupling reactions of 2-aminopyridine. 82 Scheme 2.14. Mechanistic control studies 91 Scheme 2.15. Proposed reaction mechanism 93 CHAPTER 3 Scheme 3.1. Cu-catalyzed C−H bond oxidative amidation via oxidative coupling of aryl acetaldehydes or α-carbonyl aldehydes or phenylacetylenes for synthesis of α-Ketoamides 117 Scheme 3.2. Copper catalyzed oxidative coupling of aryl ketone and amine leads to α-Ketoamides 118 Scheme 3.3. n-BuNI catalyzed aryl methyl ketone and dialkylformamides leads to α-Ketoamides. 118 Scheme 3.4. TBHP/I2 catalyzed aryl methyl ketone and dialkylformamides leads to α-Ketoamides 119 Scheme 3.5. Ru-catalyzed oxidation of ynamides. 120 Scheme 3.6. Au-catalyzed oxidation of ynamides 121 Scheme 3.7. I2 catalyzed oxidative coupling of aryl methyl ketone and benzamidine hydrochloride 121 Scheme 3.8. NIS & DMSO-mediated oxidation of ynamides 122 Scheme 3.9. General reaction scheme for oxidation of ynamides 123 Scheme 3.10. Green metrics calculation for ynamides 130 Scheme 3.11. Proposed reaction mechanism 134 Scheme 3.12. General reaction scheme for preparation of ynamides. 137 CHAPTER 4 Scheme 4.1. Strecker reaction for the synthesis of α-amino acids 165 Scheme 4.2. Hantzsch reaction for the synthesis of symmetrically substituted dihydropyridines 165 Scheme 4.3. Hantzsch reaction for the synthesis of highly substituted pyrrole 165 Scheme 4.4. Biginelli reaction for the synthesis of highly substituted dihydropyrimidines 166 Scheme 4.5. Mannich reaction for the synthesis of amino methylated products. 166 Scheme 4.6. Passerini reaction for the synthesis of α- acyloxy carboxamide. 167 Scheme 4.7. Ugi reaction for the synthesis of α- acylamino carboxamide 167 Scheme 4.8. General reaction schemes for the synthesis of α- amino acids 168 Scheme 4.9. Petasis reaction for the synthesis of α- amino acids 169 Scheme 4.10. Organocatalyzed reaction scheme for the synthesis of α- amino acids 170 Scheme 4.11. Visible-light mediated A3 coupling reaction for indole formation and mechanism 172 Scheme 4.12. The General reaction of visible-light mediated A3 coupling reaction at room temperature. 173 Scheme 4.13. Mechanistic key control experiments 182 Scheme 4.14. Proposed reaction mechanism 183 LIST OF TABLES CHAPTER 1A Table 1A. 1. Substrate scope for oxidative C-H functionalization of cyclic chloro/bromo-alkanes 14 Table 1A. 2. Substrates scope for acyclic and aromatic chloro/bromo-alkanes 15 Table 1A. 3. Substrate scope for oxidative C-H functionalization of acyclic alcohols 18 Table 1A. 4. Substrate scope for oxidative C-H functionalization of aromatic alcohols 19 Table 1A. 5. Substrate scope for oxidative C-H functionalization of acyclic and cyclic ethers 23 Table 1A. 6. Substrate scope for oxidative C-H functionalization of aromatic ethers 24 Table 1A. 7. Substrate scope for oxidative C-H functionalization of ketones 26 CHAPTER 1B Table 1B. 8. Substrate scope for oxidative destruction of chlorinated organic pollutants and pesticides in CH3CN-H2O 57 CHAPTER 2 Table 2.1: Effect of catalyst, solvent for oxidative coupling reaction of 2-aminopyridine (1a) phenylacetylene (2a) 84 Table 2.2: Results of visible light-induced CuCl catalyzed oxidative coupling reaction of 2-aminopyridine (1) phenylacetylene (2a) 86 Table 2.3: Results of visible light-induced CuCl catalyzed oxidative coupling reaction of 2-aminopyridine (1a) phenylacetylene (2) 88 CHAPTER 3 Table 3.1: Effect of catalyst, solvent for oxidation reaction of ynamide (1a) 125 Table 3.2: Results of visible light-induced CuCl catalyzed oxidation of ynamides (1) 127 Table 3.3: Results of visible light-induced CuCl catalyzed oxidation of carbazole type ynamines (3) 129 Table 3.4. Evaluation of green matrics of the current photochemical process. 131 Table 3.5. Evaluation of green metrics of a literature reported thermal process. 132 CHAPTER 4 Table 4.1: Effect of catalyst, solvent for MCRs of aniline (1a), phenylacetylene (2a) and benzoquinone (3a). 175 Table 4.2: Results of visible light-induced CuCl catalyzed MCRs of aniline (1) phenylacetylene (2a), and Benzoquinone (3a). 177 Table 4.3: Results of visible light-induced CuCl catalyzed MCRs of aniline (1a) phenylacetylene (2), and Benzoquinone (3a and 3) 180 LIST OF FIGURES CHAPTER 1A Figure 1A.1. EPR spectra detected from a cyclopentylchloride -CH3CN-H2O ozone system under uv light irradiation (top) and in dark (middle) 29 CHAPTER 1B Figure 1B.1. Twelve-Restricted Chlorinated organic pollutants and pesticides in USA 50 CHAPTER 2 Figure 2.1. Some important amide containing drugs. 74 Figure 2.2. Pyridyl benzamides in pharmaceuticals. 76 Figure 2.3. EPR spectra of the reaction mixture after blue LEDs irradiation 95 Figure 2.4. EPR spectra of the reaction mixture in the absence of CuCl 96 Figure 2.5. UV-visible spectra of the reaction mixture in CH3CN 97 CHAPTER 3 Figure 3.1. UV-visible spectra of the reaction mixture in CH3CN. 140 Figure 3.2. Isothermal titration caloriemetry (ITC) data. 141 CHAPTER 4 Figure 4.1. UV-visible spectra of the reaction mixture in CH3CN. 205

    1. (a) K. Godula and D. Sames, Science 2006, 312, 67; (b) G. Zeni and R. C. Larock, Chem. Rev. 2006, 106, 4644; (c) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev. 2007, 107, 174; (d) C. J. Rohbogner, G. C. Clososki and P. Knochel, Angew. Chem., Int. Ed., 2008, 120, 1526; (e) X. Chen, K. M. Engle, D. H. Wang and J. Q. Yu, Angew. Chem., Int. Ed., 2009, 121, 5196; (f) A. A. Kulkarni, O. Daugulis, Synthesis, 2009, 4087; (g) W. R. Gutekunst and P. S. Baran, Chem. Soc. Rev. 2011, 40, 1976; (h) C. Liu, H. Zhang, W. Shi, and A. Lei, Chem. Rev. 2011, 111, 1780.
    2. T. Bruckl, R. D. Baxter, Y. Ishihara, and P. S. Baran, Acc. Chem. Res.2011, 45,826.
    3. T. Punniyamurthy, S. Velusamy, and J. Iqbal, Chem. Rev. 2005, 105, 2329.
    4. (a) E. M. Simmons and J. F. Hartwig, Nature 2012, 483, 70; (b) Y. Feng and G. Chen, Angew. Chem., Int. Ed., 2010, 49, 958; (c) K. Godula, and D. Sames, Science 2006, 312, 67; (d) T. Bruckl, R. D. Baxter, Y. Ishihara and P. S. Baran, Acc. Chem. Res.2011, 45, 826.
    5. X. Wu, K. Yang, Y. Zhao, H. Sun, G. Li and H. Ge, Nat. Commun., 2015, 6, 6462.
    6. J. M. Howell, K. Feng, J. R. Clark, L. J. Trzepkowski and M. C. White, J. Am. Chem. Soc, 2015, 137, 14590.
    7. S. E. Ammann, W. Liu and M. C. White, Angew. Chem., Int. Ed., 2016, 55, 9571.
    8. (a) E. Balaraman, E. Khaskin, G. Leitus and D. Milstein, Nat. Chem, 2013, 5,122; (b) K. I. Fujita, N. Tanino and R. Yamaguchi, Org. Lett., 2007, 9,109.
    9. (a) R. Bernini, G. Gualandi, C. Crestini, M. Barontini, M. C. Belfiore, S. Willför, P. Eklund and R. Saladino, Bioorg. Med. Chem. 2009, 17, 5676; (b) S. M. Kupchan, M. A. Eakin and A. M. Thomas, J. Med. Chem., 1971, 14, 1147; (c) J. Posakony, M. Hirao, S. Stevens, J. A. Simon and A. Bedalov, J. Med. Chem., 2004, 47, 2635; (d) S. K. Mandal, M. Paira and S. C. Roy, J. Org. Chem., 2008, 73, 3823; (e) S. Wagner, R. Arce, R. Murillo, L. Terfloth, J. Gasteiger and I. Merfort, J. Med. Chem., 2008, 51, 1324.
    10. (a) Y.Shao, F. Zhang, J. Zhang and X. Zhou, Angew. Chem. Int. Ed. 2016, 55, 11485; (b) X. Huang, X. Li, M. Zou, S. Song, C. Tang, Y. Yuan, and N. Jiao, J. Am. Chem. Soc. 2014, 136, 14858.
    11. A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem. Int. Ed. 2011, 50, 11062.
    12. S. Gligorovski, R. Strekowski, S. Barbati and D.Vione, Chem. Rev. 2015, 115, 13051.
    13. J. Barbara, F. Pitts and J. N. Pitts Jr, Science 1997, 276, 1045.
    14. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17 (2), 513.
    15. B. Ervens, S. Gligorovski and H. Herrmann, Phys. Chem. Chem. Phys., 2003, 5 (9), 1811.
    16. P. Wardman, J. Phys. Chem. Ref. Data, 1989, 18 (4), 1637.
    17. K. C. Hwang and A. Sagadevan, Science, 2014, 346, 1495.
    18. R. Mazitschek, M. Mulbaier and A. Giannis, Angew. Chem. Int. Ed. 2002, 41, 4059.
    19. B. L. Nahara and A. B.Turne, Journal of chemical research. 2004, 4, 329.
    20. C. C. Price and A. L. Tumolo, J. Am. Chem. Soc, 1964, 86 (21), 4691.
    21. V. I. Stenberg, R. D. Olen, C. T.Wang and N. Kulevery, J. Org. Chem, 1967, 32(10), 3227.
    22. R. V. Ottenbacher, E. P.Talsi and K. P. Bryliakov, Molecules, 2016, 21, 1454.
    23. E. Finkelstein, G. M. Rosen and E. J. Rauckman, Arch. Biochem. Biophys. 1980, 200, 1.

    1. T. E. Doll and F.H. Frimmel. Catalysis Today, 2005, 101, 195.
    2. F.wania and D.Mackay. Environ. Sci. Technol, 1996, 30, 390A.
    3. S. Tanabe, Marine Pollution Bulletin, 2002, 45, 69.
    4. C. H. Walker, "Organic Pollutants, an Eco toxicological Perspective", 2001.
    5. K.C. Jones, P. de Voogt, Environmental Pollution, 1999, 100, 209.
    6. L. Ritter, K.R. Solomon, J. Forget, Persistent Organic Pollutants, (The International Programme on Chemical Safety) (IPCS).
    7. P. I. Nikel, D. Pe´rez-Pantoja and V. de Lorenzo, Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1, 3-dichloprop-1-ene, metabolism by Pseudomonas pavonaceae. Phil Trans R Soc B 368:20120377. http://dx.doi.org/10.1098/rstb.2012.0377,
    8. Stockholm Convention on Persistent Organic Pollutants, 1.
    9. E. M. Urreaa, M. P. Trujillo, G. Caminal, and T. Vicent, Journal of Hazardous Materials, 2009, 166, 1141.
    10. R. S. Alvarez, and J. A. Field, Chemosphere, 2008, 71, 1005.
    11. K. Hashimoto, S. Suga, Y. Wakayama and T. Funazukuri, J Mater Sci, 2008, 43, 2457.
    12. G. J. Hutchings, C.S. Heneghan, I. D. Hudson and S.M. Taylor, Nature, 1996, 384, 341.
    13. C. Grittin, M. Malcomson, Q. Fernando and N. Korte, Environ. Sci. Technol, 1995, 29, 2898.
    14. S. Zhang and J. F. Rusllng, Environ. Sci. Technol, 1993, 27, 1375.
    15. H. Einaga and S. Futamura, J. Catalysis, 2006, 243, 446.
    16. K. C. Hwang and A. Sagadevan, Science, 2014, 346, 1495.
    17. J. Cerkovnik, E. Erzen, J. Koller and B. Plesnicar, J. Am. Chem. Soc. 2002, 124, 404.

    1. See for examples; (a) K. Miyamoto, N. Tada and M. Ochiai, J. Am. Chem. Soc., 2007, 129, 2772; (b) T. Seiser, O. A. Roth and N. Cramer, Angew. Chem., Int. Ed., 2009, 48, 6320; (c) C. Najera and J. M. Sansano, Angew. Chem., Int. Ed., 2009, 48, 2452; (d) T. Seiser and N. Cramer, J. Am. Chem. Soc., 2010, 132, 5340; (e) H. Li, Y. Li, X. S. Zhang, K. Chen, X. Wang and Z. J. Shi, J. Am. Chem. Soc., 2011, 133, 15244.
    2. For selected reviews see: (a) C. H. Jun, Chem. Soc. Rev., 2004, 33, 610; (b) Y.J. Park, J. W. Park and C.H. Jun, Acc. Chem. Res., 2008, 41, 222; (c) M. Murakami and T. Matsuda, Chem. Commun., 2011, 47, 1100.
    3. Selected examples; (a) F. Chen, T. Wang and N. Jiao, Chem. Rev., 2014, 114, 8613; (b) T. Wang and N. Jiao, Acc. Chem. Res., 2014, 47, 1137; (c) M. Gaydou and A. M. Echavarren, Angew. Chem. Int. Ed., 2013, 52, 13468; Selected examples; for Ru metal: (d) S. Datta, C.-L. Chang, K.-L. Yeh and R.-S. Liu, J. Am. Chem. Soc., 2003, 125, 9294; for Pd: (e) A.-Z. Wang and H.-F. Jiang, J. Am. Chem. Soc., 2008, 130, 5030; for Ag: (f) T. Shen, T. Wang, C. Qin and N. Jiao, Angew. Chem., Int. Ed., 2013, 52, 6677; for Au: (g) C. Qin, Y. Su, T. Shen, X. Shi and N. Jiao, Angew. Chem., Int. Ed., 2016, 55, 350; for Rh: (h) C.-H. Jun, H. Lee, C. W. Moon and H.-S. Hong, J. Am. Chem. Soc., 2001, 123, 8600.
    4. R. M. Moriarty, R. Penmasta, A. K. Awasthi and I. Prakash, J. Org. Chem., 1988, 53, 6124.
    5. Y. Sawaki, H. Inoue and Y. Ogata, Bull. Chem. Soc. Jpn., 1983, 56, 1133.
    6. C. Shunyou , Z. Xinyang, W. Xinbo, L. Qisong , L. Zigang and D. Z. Wang, Angew. Chem. Int. Ed., 2012, 51, 8050.
    7. (a) H.W. Shih, M. N. Vander Wal, R. L. Grange and D. W. C. MacMillan, J. Am. Chem. Soc., 2010, 132, 13600; (b) M. Neumann, S. Füldner, B. König and K. Zeitler, Angew. Chem. Int. Ed., 2011, 50, 951; (c) D. A. Nagib, M. E. Scott and D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 10875; (d) D. A. Nicewicz and D. W. C. MacMillan, Science., 2008, 322, 77.
    8. (a) Z. Lu, M. Shen and T. P. Yoon, J. Am. Chem. Soc., 2011, 133, 1162; (b) M. A. Ischay, Z. Lu and T. P. Yoon, J. Am. Chem. Soc., 2010, 132, 8572; (c) J. D. Crowley, S. M. Goldup, A.-L. Lee, D. A. Leigh and R. T. McBurney, Chem. Soc. Rev., 2009, 38, 1530; (d) M. A. Ischay, M. E. Anzovino, J. Du and T. P. Yoon, J. Am. Chem. Soc., 2008, 130, 12886.
    9. (a) L. Furst, J. M. R. Narayanam and C. R. J. Stephenson, Angew. Chem. Int. Ed., 2011, 50, 9655; (b) J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson, J. Am. Chem. Soc., 2009, 131, 8756.
    10. (a) M. Rueping, C. Vila, R. M. Koenigs, K. Poscharny and D. C. Fabry, Chem. Commun., 2011, 47, 2360; (b) P. V. Pham, D. A. Nagib and D. W. C. MacMillan, Angew. Chem. Int. Ed., 2011, 50, 6119; (c) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev., 2007, 107, 2725.
    11. C. Zhu, R. Wang and J. R. Falck, Chem. Eur. J., 2012, 7, 1502.
    12. R. M. Al-Zoubi, O. Marion and D. G. Hall, Angew. Chem. Int. Ed., 2008, 47, 2876.
    13. D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Jr. Leazer, R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks and T. Y. Zhang, Green Chem., 2007, 9, 411.
    14. A. L. J. Beckwith, In the Chemistry of Amides. ed. J. Zabicky, Interscience: London, 1970, p.73.
    15. Y. S. Klausner and M. Bodansky, Synthesis., 1972, 453.
    16. B. C. Challis and J. A. Challis, In Comprehensive Organic Chemistry. ed. D. H. R. Barton, W. D. Ollis, Pergamon: Oxford, 1979, vol. 2, p. 957.
    17. S. R. Sandler and W. Karo, In Organic Functional Group Preparations, ed. H. H. Wasserman, Academic, New York, 2nd edn. 1983, vol. 1, p. 315.
    18. G. Benz, In Comprehensive Organic Synthesis., ed. B. M. Trost, Pergamon: Oxford, 1991, vol. 6, p. 381.
    19. M. B. Smith and J. March, March’s Advanced Organic Chemistry., 6th edition, Willey- Interscience, New Jersey, USA, 2007.
    20. H. Charville, D. Jackson, G. Hodges and A. Whiting, Chem. Commun., 2010, 46, 1813.
    21. (a) Synthetic Reagents, ed. J. S. Pizey, Wiley: New York, 1974, vol.1, p. 321. (b) Handbook of Reagents for Organic Synthesis: Activating Agents and Protecting Groups, ed. A. J. Pearson and W. R. Roush, Wiley: New York, 1999, 370; (c) W. Chu, Z. Tu, E. McElveen, J. Xu, M. Taylor, R. R. Luedtke and R. H. Mach, Bioorg. Med. Chem., 2005, 13, 77.
    22. (a) R. Adams and L. H. Ulrich, J. Chem. Soc., 1920, 42, 599; (b) I. Kuwajima, H. Urabe, In Organic Syntheses, Wiley: New York, 1993, Collect. Vol. VIII, p. 486.
    23. S. Knnap and F. S. Gibson, In Organic Syntheses, Wiley: New York, 1998, Collect. Vol. IX, p-516.
    24. T. Shioiri, K. Ninomiya and S. Y. Yamada, J. Am. Chem. Soc., 1972, 94, 6203.
    25. M. Mikolajczyk and P. Kielbasinski, Tetrahedron., 1981, 37, 233.
    26. C. Kunishima, C. Kawashi, J. Morita, K. Terao, F. Iwasaki and S. Tani, Tetrahedron, 1999, b, 13159.
    27. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals (Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, 2nd ed., 2004, vol. 1 and 2.
    28. (a) M. Vazquez-Tato, Synlett, 1993, 556; (b) B. Baldwin, T. Hirose and Z. Wang, Chem. Commun., 1996, 2269; (c) R. Varma and K. Naicker, Tetrahedron Lett., 1999, 40, 6177; (d) L. Perreux and A. Loupy, Tetrahedron, 2001, 57, 9199; (e) L. Perreux, A. Loupy and F. Volatron, Tetrahedron, 2002, 58, 2155-2162; (f) D. Sauer, D. Kalvin and K. Phelan, Org. Lett., 2003, 5, 4721; (g) A. Khalafi-Nezhad, B. Mokhtari and M. N. S. Rad, Tetrahedron Lett., 2003, 44, 7325; (h) E. Gelens, L. Sliedregt, B. Van Steen, C. Kruse, R. Leurs and R. V. Orru, Tetrahedron Lett., 2005, 46, 3751.
    29. (a) P. Tang, Org. Synth., 2005, 81, 262; (b). K. Arnold, B. Davies, R. Giles, C. Grosjean, G. Smith and A. Whiting, Adv. Synth. Catal., 2006, 348, 813.
    30. (a) J. Cossy and C. Pale-Grosdemange, Tetrahedron Lett., 1989, 30, (21), 2771; (b). B. S. Jursic and Z. Zadravkovski, Synth. Commun., 1993, 23, 2761; (c). H. Fukushima, H. Nakatani, Y. Nawashiro, T. Seki, Y. Suzuki and K. Toki, US3551462, 1970, Smitomo Chemical Co.
    31. K. Arnold, B. Davies, D. Hérault and A. Whiting, Angew. Chem. Int. Ed., 2008, 47, 2673.
    32. (a) L. Ferrins, M. Gazdik, R. Rahmani, S. Varghese, M. L. Sykes, A. J. Jones, V. M. Avery, K. L. White, E. Ryan, S. A. Charman, M. Kaiser, C. A. S. Bergström and J. B. Baell, J. Med. Chem., 2014, 57, 6393; (b) L. H. Heitman, J. D. Veldhoven, A. Zweemer, K. Ye, J. Brussee and A. P. IJzerman, J. Med. Chem., 2008, 51, 4724; (c) F. M. Matschinsky, Nature Rev. Drug Discove., 2009, 8, 399.
    33. (a) R. Deshidi, M. A. Rizvi and B. A. Shah, RSC Adv., 2015, 5, 90521; (b) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 6.
    34. M. P. Cassidy, J. Raushel and V. V. Fokin, Angew. Chem., Int. Ed., 2006, 45, 3154.
    35. M. Kohn and R. Breinbauer, Angew. Chem., Int. Ed., 2004, 43, 3106.
    36. For amidation of benzylalcohol; (a) S. Selvamurugan, R. Ramachandran, G. Prakash, P. Viswanathamurthi, J. G. Malecki, A. Endo, J. Organomet. Chem., 2016, 803, 119; (b) amidation of ketone; W. Ding and Q. Song, Org. Chem. Front., 2015, 2, 765; (c) X. Huang, X. Li, M. Zou, S. Song, C. Tang, Y. Yuan and N. Jiao, J. Am. Chem. Soc., 2014, 136, 14858, and references therein.
    37. Other methods; (a) S. M. Crawford, C. B. Lavery and M. Stradiotto, Chem. Eur. J., 2013, 19, 16760; (b) L. Gu, W. Wang, J. Liu, G. Li and M. Yuan, Green Chem., 2016, 18, 2604.
    38. (a) Q. Shen, S. Shekhar, J. P. Stambuli and J. F. Hartwig, Angew. Chem. Int. Ed., 2005, 44, 1371; (b) J. M. Muñoz, J. Alcázar, A. de la Hoz, Á. Díaz-Ortiz and S. A. Alonso de Diego, Green Chem., 2012, 14, 1335; (C) S. K. Hoon and H. S. Chang, Org. Lett., 2003, 15, 2687.
    39. S. Yang, H. Yan, X. Ren, X. Shi, J. Li, Y. Wang and G. Huang, Tetrahedron., 2013, 69, 6431.
    40. O. P. S. Patel, D. Anand, R. K. Maurya and P. P. Yadav, Green Chem., 2015, 17, 3728.
    41. P. Subramanian, S. Indu and K. P. Kaliappan, Org. Lett., 2014, 16, 6212.
    42. Cyclic product; (a) J. Zeng, Y. J. Tan, M. L. Leow and X.-W. Liu, Org. Lett., 2012, 14, 4386; (b) C. He, J. Hao, H. Xu, Y. Mo, H. Liu, J. Han and A. Lei, Chem. Comm., 2012, 48, 11073.
    43. Ciamician, G. Science., 1912, 36, 385.
    44. For selective reviews on important bond formations by photocatalysis see: (a) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev., 2007, 107, 2725; (b) N. Hoffmann, Chem. Rev. 2008, 108, 1052. (c) J. Svoboda and B. König, Chem. Rev., 2006, 106, 5413; (d) T. Bach, Synthesis 1998, 683.
    45. For fine chemical synthesis with sunlight, see: P. Esser, B. Pohlmann and H.D. Scharf, Angew. Chem., Int. Ed., 1994, 33, 2009.
    46. For recent reviews on visible light photocatalysis see: (a) F. Teply, Collect. Czech. Chem. Commun. 2011, 76, 859; (b) J. Xuan and W.J. Xiao, Angew. Chem., Int. Ed., 2012, 51, 6828; (c) L. Shi and W. Xia, Chem. Soc. Rev., 2012, 21, 7687; (d) M. A. Ischay and T.P. Yoon, Eur. J. Org. Chem. 2012, 18, 3359; (e) J.W.Tucker and C. R .J. Stephenson, J. Org. Chem. 2012, 77, 1617; (f) Y. M. Xi, H. Yi and A.W. Lei, Org. Biomol. Chem. 2013, 11, 2387.
    47. For photoredox catalysis (Ru, -Ir); (a) C. K. Prier, D. A Rankic and D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; for copper-photoredox catalysis; (b) S. Paria and O. Reiser, ChemCatChem., 2014, 6, 2477; (c) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science., 2012, 338, 647; (d) D. T. Ziegler, J. Choi, J. M. Muñoz-Molina, A. Bissember, J. C. Peters and G. C. Fu, J. Am. Chem. Soc., 2013, 135, 13107; (e) L. Gu, C. Jin, J. Liu, H. Zhang, M. Yuan and G. Li, Green Chem., 2016, 18, 1201.
    48. (a) A. Edel, P. A. Marnot and J. P. Sauvage, Nouv. J. Chim. 1984, 8, 495; (b) R.S. Khnayzer, C. E. McCusker, B. S. Olaiya and F. N. Castellano, J. Am. Chem. Soc. 2010, 135, 14068; (c) S. P. Luo, E. Mejía, A. Friedrich, A. Pazidis, H. Junge, A. E. Surkus, R. Jackstell, S. Denurra, S. Gladiali, S. Lochbrunner, and M. Beller, Angew. Chem. Int. Ed., 2013, 52, 419; (d) E. Mejía, S. P. Luo, M. Karnahl, A. Friedrich, S. Tschierlei, A. E. Surkus, H. Junge, S. Gladiali, S. Lochbrunner and M. Beller, Chem. Eur. J. 19, 15972; For a highlight on noble metal free photocatalytic hydrogen production see: (e) B. van den Bosch, H. C Chen, J. I. van der Vlugt, A. M. Brouwer and J. N. H. Reek, Chem. Sus. Chem, 2013, 6, 790.
    49. (a) A. Sagadevan and K. C. Hwang, Adv. Synth. Catal, 2012, 354, 3421; (b) A. Sagadevan, A. Ragupathi and K. C. Hwang, Photochem. Photobiol. Sci., 2013, 12, 2110; (c) A. Sagadevan, A. Ragupathi, C.-C. Lin, J. R. Hwu and K. C. Hwang, Green Chem., 2015, 17, 1113; (d) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (e) A. Sagadevan, P. C. Lyu and K. C. Hwang, Green Chem., 2016, 18, 4526. (f) A. Sagadevan, V. P. Charpe and K. C. Hwang, Catal. Sci. Technol. 2016, 6, 7688.
    50. (a) M. Gholami and R. R. Tykwinski, Chem. Rev., 2006, 106, 4997; (b) R. Chinchilla and C. Najera, Chem. Soc. Rev., 2011, 40, 5084.
    51. CCDC 1476789 (4k) contains the supplementary crystallographic data for this work.
    52. J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302, and references therein.
    53. (a) S. D. McCann and S. S. Stahl, Acc. Chem. Res., 2015, 48, 1756; (b) K. K. Toh, Y.-F. Wang, E. P. J. Ng and S. Chiba, J. Am. Chem. Soc., 2011, 133, 13942.
    54. V. W.-Yam, K. K.-W. Lo and K. M.-C. Wong, J. Organomet. Chem., 1999, 578, 3.
    55. M. Majek and A. Jacobi von Wangelin, Angew. Chem., Int. Ed., 2013, 52, 5919.
    56. A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem., Int. Ed., 2011, 50, 11062.
    57. J. Li and L. Neuville, Org. Lett., 2013, 15, 1752.
    58. S. E. Allen, R. R. Walvoord, R. P. Salinas and M. C. Kozlowski, Chem. Rev., 2013, 113, 6234.
    59. A. G. Condie, J. C. González-Gómez and C. R. J. Stephenson, J. Am. Chem. Soc., 2010, 132, 1464.
    60. (a) G. K. Friestad, Tetrahedron, 2001, 57, 5461; (b) T. Xiong and Q. Zhang, Chem. Soc. Rev., 2016, 45, 3069; (c) L. Zhou, S. Tang, X. Qi, C. Lin, K. Liu, C. Liu, Y. Lan and A. Lei, Org. Lett., 2014, 16, 3404.

    1. For reviews on aerobic oxidative reactions. See: (a) S. S. Stahl, Angew. Chem. Int. Ed., 2004, 43, 3400; (b) Z. Shi, C. Zhang, C. Tang and N. Jiao, Chem. Soc. Rev., 2012, 41, 3381; (c) A. N. Campbell and S. S. Stahl, Acc. Chem. Res., 2012, 45, 851; (d) S. D. McCann and S. S. Stahl, Acc. Chem. Res., 2015, 48, 1756.
    2. (a) F. Chen, T. Wang and N. Jiao, Chem. Rev., 2014, 114, 8613; (b) T. Wang and N. Jiao, Acc. Chem. Res., 2014, 47, 1137; (c) N. J. Turro, V. Ramamurthy, K.-C. Liu, A. Krebs and R. Kemper, J. Am. Chem. Soc. 1976, 98, 6758; (d) M. Sasaki, M. Ando, M. Kawahata, K. Yamaguchi and K. Takeda, Org. Lett. 2016, 18, 1598.
    3. (a) R. Chinchilla and C. Nájera, Chem. Rev., 2014, 114, 1783; (b) S. Chen, Z. Liu, E. Shi, L. Chen, W. Wei, H. Li, Y. Cheng and X. Wan, Org. Lett., 2011, 13, 2274; (c) W. Ren, Y. Xia, S.-J. Ji, Y. Zhang, X. Wan and J. Zhao, Org. Lett., 2009, 11, 1841; Metal-free: (d) X. Liu, T. Cong, P. Liu and P. Sun, J. Org. Chem., 2016, 10.1021/acs.joc.6b00097.
    4. (a) X.-N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski and R. P. Hsung, Acc. Chem. Res., 2014, 47, 560; (b) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and R. P. Hsung, Chem. Rev., 2010, 110, 5064; (c) G. Evano, A. Coste, and K. Jouvin, Angew. Chem., Int. Ed. 2010, 49, 2840.
    5. (a) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 15372; (b) S. A. Gawade, D. B. Huple, R.-S. Liu, J. Am. Chem. Soc., 2014, 136, 2978; (c) A. Siva Reddy, A. L. Siva Kumari, S. Saha, K. C. Kumara Swamy, Adv. Synth. Catal., 2016, 358, 1625; (d) C. Shu, Y.-H. Wang, C.-H. Shen, P.-P. Ruan, X. Lu and L.-W. Ye, Org. Lett., 2016, 18, 3254; (e) S. N. Karad and R.-S. Liu, Angew. Chem., Int. Ed., 2014, 53, 9072; (f) J. Zhang, Q. Zhang, B. Xia, J. Wu, X.-N. Wang, J. Chang, Org. Lett., 2016, 18, 3390.
    6. (a) S. M. Kim, I. S Byun and Y. H. Kim, Angew. Chem., Int. Ed. 2000, 39, 728; (b) J.-H. Chen, U. Venkatesham, L.-C. Lee, and K. Chen, Tetrahedron 2006, 62, 887; (c) S. W. Young, Y. H. Kim, J.-W. Hwang and Y. Do, Chem. Commun., 2001, 996; (e) M. Kosior, M. Asztemborska and J. Jurczak, Synthesis 2004, 1, 87; (f) L. Yang, D.-X. Wang, Z.-T. Huang and M.-X. Wang, J. Am. Chem. Soc., 2009, 131, 10390; (g) S. R. Ram, A. R. Devi and D. S. Iyengar, Chem. Lett. 2002, 718.
    7. (a) C. De Risi, G. P. Pollini and V. Zanirato, Chem. Rev. 2016, 116, 3241; (b) D. Kumar, S. R. Vemula and G. R. Cook, ACS Catal. 2016, 6, 4920-4945.
    8. (a) C. K. Wada, R. R. Frey, Z. Ji, M. L. Curtin, R. B. Garland, J. H. Holms, J. Li, L. J. Pease, J. Guo, K. B. Glaser, P. A. Marcotte, P. L. Richardson, S. S. Murphy, J. J. Bouska, P. Tapang, T. J. Magoc, D. H. Albert, S. K. Davidsen and M. R. Michaelides, Bioorg. Med. Chem. Lett., 2003, 13, 3331; (b) M. R. Angelastro, S. Mehdi, J. P. Burkhart, N. P. Peet and P. Bey, J. Med. Chem. 1990, 33, 11; (c) T. D. Ocain and D. H. Rich, J. Med. Chem. 1992, 35, 451.
    9. (a) C. Zhang and N. Jiao, J. Am. Chem. Soc. 2010, 132, 28; (b) C. Zhang, C, Z. J. Xu, L. J. Zhang and N. Jiao, Angew.Chem., Int. Ed. 2011, 50, 11088; (c) C. Zhang, X. L. Zong, L. G. Zhang and N. Jiao, Org. Lett. 2012, 14, 3280.
    10. (a) J. Zhang, Y. Wei, S. Lin, F. Liang and P. Liu, Org. Biomol. Chem. 2012, 10, 9237; (b) F.-T. Du and J.-X. Ji, Chem. Sci. 2012, 3, 460; (c) D. Li, M. Wang, J. Liu, Q. Zhao and L. Wang, Chem. Commun., 2013, 49, 3640.
    11. W.-P. Mai, H.-H. Wang, Z.-C. Li, J.-W. Yuan, Y.-M. Xiao, L.-R. Yang, P. Mao and L.-B. Qu, Chem. Commun., 2012, 48, 10117.
    12. (a) W. Wei, Y. Shao, H. Hu, F. Zhang, C. Zhang, Y. Xu and X. Wan, J. Org. Chem., 2012, 77, 7157; (b) X. Zhang, M. Wang, Y. Zhang and L. Wang, RSC Adv., 2013, 3, 1311; (c) Q. Zhao, T. Miao, X. Zhang, W. Zhou and L. Wang, Org. Biomol. Chem. 2013, 11, 1867.
    13. (a) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 6; I2-catalysed method, see: (b) X. Wu, Q. Gao, S. Liu and A. Wu, Org. Lett., 2014, 16, 2888.
    14. (a) Z. F. Al-Rashid, W. L. Johnson, R. P. Hsung, Y. Wei, P.-Y. Yao, R. Liu and K. Zhao, J. Org. Chem., 2008, 73, 8780; (b) C.-F. Xu, M. Xu, Y.-X. Jia and C.-Y. Li, Org. Lett., 2011, 13, 1556; metal-free, see: (c) X. Wu, Q. Gao, S. Liu, and A. Wu, Org. Lett., 2014, 16, 2888; (d)T. Chikugo, Y. Yauchi, M. Ide and T. Iwasawa, Tetrahedron 2014, 70, 3988; using DMDO as oxidant, see: (e) Z. F. Al-Rashid, R. P. Hsung, Org. Lett., 2008, 10, 661.
    15. Light-induced photoredox catalyst, see: (a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem.Rev., 2013, 113, 5322; (b) M. Reckenthäler, A.G. Griesbeck, Adv. Synth. Catal., 2013, 355, 2727; (c) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102; (d) P. Y. Tehshik, A. I. Michael, D. Juana, Nat. Chem., 2010, 2, 527.
    16. Copper-photoredox catalyst, see: (a) M. Pirtsch, S. Paria, T. Matsuno, H. Isobe, O. Reiser, Chem. Eur. J., 2012, 18, 7336; (b) S. Paria and O. Reiser, ChemCatChem., 2014, 6, 2477; (c) A. Baralle, L. Fensterbank, J.-P. Goddard, C. Ollivier, Chem. Eur. J., 2013, 19, 10809; (d) A. C. Hernandez-Perez, S. K. Collins, Angew. Chem. Int. Ed., 2013, 52, 12696; (e) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science., 2012, 338, 647.
    17. Our works see: (a) A. Sagadevan and K. C. Hwang, Adv. Synth. Catal., 2012, 354, 3421; (b) A. Sagadevan, A. Ragupathi, and K. C. Hwang, Photochem. Photobiol. Sci., 2013, 12, 2110; (c) A. Sagadevan, A. Ragupathi, C.–C. Lin, J. R. Hwu and K. C. Hwang, Green Chem., 2015, 17, 1113; (d) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (e) A. Sagadevan, P. C. Lyu, and K. C. Hwang, Green Chem., 2016, 18, 4526; (f) A. Ragupathi, A. Sagadevan, C.-C. Lin, J. R. Hwu, K. C. Hwang, Chem. Commun. 2016, 52, 11756; (g) A. Sagadevan, V. P. Charpe and K. C. Hwang, Catal. Sci. Technol. 2016, 6, 7688.
    18. R. Chinchilla and C. Najera, Chem. Soc. Rev., 2011, 40, 5084.
    19. M. Gholami, and R. R. Tykwinski, Chem. Rev., 2006, 106, 4997.
    20. (a) C. Schuster, K. K. Julich-Gruner, H. Schnitzler, R. Hesse, A. Jäger, A. W. Schmidt and H.-J. Knölker, J. Org. Chem., 2015, 80, 5666; (b) A. W. Schmidt, K. R. Reddy and H.-J. Knölker, Chem. Rev., 2012, 112, 3193.
    21. CCDC 1495656 (2c) & CCDC 1495655 (2d) contain the supplementary crystallographic data for this work.
    22. R. Turgis, I. Billault, S. Acherar, J. Augé and M.-C. Scherrmann, Green Chem., 2013, 15, 1016.
    23. (a) Z. Chen, W. Zeng, H. Jiang and L. Liu, Org. Lett., 2012, 14, 5385; (b) J. Li and L. Neuville, Org. Lett., 2013, 15, 1752; c) S.-U. Kim, Y. Liu, K. M. Nash, J. L. Zweier, A. Rockenbauer and F. A. Villamena, J. Am. Chem. Soc., 2010, 132, 17157.
    24. (a) C. Zhang and N. Jiao, Angew. Chem., Int. Ed., 2010, 49, 6174; (b) K. K. Toh, Y.-F. Wang, E. P. J. Ng and S. Chiba, J. Am. Chem. Soc., 2011, 133, 13942; (c) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas and M. C. Kozlowski, Chem. Rev., 2013, 113, 6234.
    25. H. Wang, Y. Wang, D. Liang, L. Liu, J. Zhang and Q. Zhu, Angew. Chem., Int. Ed., 2011, 50, 5678.
    26. C. Zhang, Z. Xu, L. Zhang and N. Jiao, Angew. Chem., Int. Ed., 2011, 50, 11088.
    27. D. Vasu, H. H. Hung, S. Bhunia, S. A. Gawade, A. Das and R. S. Liu, Angew. Chem., Int. Ed., 2011, 50, 6911.
    28. J. Lee, Y. L. Zhong, R. A. Reamer and D. Askin, Org. Lett. 2003, 5, 4175.

    1. A. R. Tilekar, A. R. Jagdale , G. Kukreja , G. G. Shenoy and N. Sinha, Tetrahedron, http://dx.doi.org/10.1016/j.tetasy.2016.10.014.
    2. (a) F. Ullmann, Chem. Ber. 1903, 36, 2382; (b) I. Goldberg, Chem. Ber. 1906, 39, 1691; (c) M. Kosugi, M. Kameyama and T. Migita, Chem. Lett. 1983, 12, 927; (d) M. S. Driver and J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 7217; (e) D. Chan, Tetrahedron Lett. 1996, 37, 9013; (f) A. S. Guram and S. L. Buchwald, J. Am. Chem. Soc. 1994, 116, 7901.
    3. V. Khedkar, A. Tillack, and M. Beller, Org. Lett., 2003, 5, 4767.
    4. D. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27.
    5. (a) B. P. Fors, D. A. Watson, M. R. Biscoe and S. L. Buchwald, J. Am.Chem. Soc. 2008, 130, 13552; (b) J. F. Hartwig, Synlett, 1997, 329; (c) A. T. Brusoe and J. F. Hartwig, J. Am. Chem. Soc. 2015, 137, 8460.
    6. K. Shin, H. Kim, and S. Chang, Acc. Chem. Res. 2015, 48, 1040.
    7. (a) J. Zhu, Q. Wang and M. Wang, Multicomponent Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2015. (b) Estevez, V.;Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2014, 43, 4633. (c) Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Chem. Rev. 2014, 114, 8323. (d) Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem. 2014, 16, 2958. (e) van der Heijden, G.; Ruijter, E.; Orru, R. V. A. Synlett. 2013, 24, 666.
    8. (a) Theato, P. Multi-Component and Sequential Reactions in Polymer Synthesis; Springer International Publishing: Heidelberg, 2015; Vol. 269. (b) Kakuchi, R. Angew. Chem., Int. Ed. 2014, 53, 46; (c) Rudick, J. G. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3985; (d) Wang, S.; Fu, C.; Wei, Y.; Tao, L. Macromol. Chem. Phys. 2014, 215, 486.
    9. (a) L. Weber, Curr. Med. Chem., 2002, 9, 2085; (b) L. Weber, Drug Discovery Today, 2002, 7, 143; (c) Y. Huang, A. Yazbak and A. Domling, in Multicomponent Reactions in Green Techniques for Organic Synthesis and Medicinal Chemistry, ed. W. Zhang and B. W. Cue, John Wiley & Sons, Ltd, Chichester, UK, 2012, p. 499; (d) C. Kalinski, H. Lemoine, J. Schmidt, C. Burdack, J. Kolb, M. Umkehrer and G. Ross, Synthesis, 2008, 4007.
    10. (a) O. Kreye, T. Tóth, and M. A. R. Meier, J. Am. Chem. Soc. 2011, 133, 1790; (b) X. X. Deng, L. Li, Z. L. Li, A. Lv, F. S. Du and Z. C. Li, ACS Macro Lett. 2012, 1, 1300; (c) L. Li, A. Lv, X. X. Deng, F. S. Du and Z. C. Li, Chem. Commun. 2013, 49, 8549; (d) L. Li, A. Lv, X. X. Deng, F. S. Du and Z. C. Li, Macromolecules 2014, 47, 4660; (e) S. Wang, N. Zhang, X. Ge, Y. Wan, X. Li, L. Yan, Y. Xia and B. Song, Soft Matter, 2014, 10, 4833. (f) P. R. Andreana, C. C. Liu and S. L. Schreiber, Org. Lett., 2004, 6, 4231.
    11. (a)A. Sehlinger, P. K. Dannecker, O. Kreye, and M. A. R. Meier, Macromolecules, 2014, 47, 2774; (b) N. Gangloff, D. Nahm, L. Döring, D. Kuckling, and R. J. Luxenhofer, Polym. Sci., Part A: Polym. Chem. 2015, 53, 1680; (c) B. Yang, Y. Zhao, Y. Wei, C. Fu, and L. Tao, Polym. Chem. 2015, 6, 8233; (d) I. Ugi, R. Meyr, U. Fetzer and C. Steinbrückner, Angew. Chem. 1959, 71, 386; (e) A. Domling and I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168.
    12. (a) I. H. Lee, H. Kim and T. L. Choi, J. Am. Chem. Soc. 2013, 135, 3760; (b) H. Kim, and T. L. Choi, ACS Macro Lett. 2014, 3, 791.
    13. (a) C. Y. K. Chan, N. W .Tseng. J. W. Y Lam, J. Liu, R. T. K. Kwok and B. Z. Tang, Macromolecules 2013, 46, 3246; (b) Y. Liu, M. Gao, J. W. Y. Lam, R. Hu and B. Z. Tang, Macromolecules 2014, 47, 4908.
    14. (a) N. Miyaki, I. Tomita, and T. Endo, Macromolecules 1996, 29, 6685; (d) Y. Zhao, Y. Yu, Y. Zhang, X. Wang, B. Yang, Y. Zhang, Q. Zhang, C. Fu, Y. Wei and L. Tao, Polym. Chem. 2015, 6, 4940.
    15. (a) R. Kakuchi and P. Theato, ACS Macro Lett. 2013, 2, 419; (b) R. Kakuchi, and P. Theato, ACS Macro Lett. 2014, 3, 329; (c) P. R. Bachler, M. D. Schulz, C. A. Sparks, K. B. Wagener and B. S. Sumerlin, Macromol. Rapid Commun. 2015, 36, 828.
    16. (a) T. A. Skotheim and J. R. Reynolds, Handbook of Conducting Polymers, 3rd ed.; CRC Press LCC: Boca Raton, 2007; (b) Facchetti, A. Chem. Mater. 2011, 23, 733; (c) Y. J. Cheng, S. H. Yang and C. S. Hsu, Chem. Rev. 2009, 109, 5868; (d) L. Dou, Y. Liu, Z. Hong, G. Li and Y. Yang, Chem. Rev. 2015, 115, 12633; (e) D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev. 2000, 100, 2537.
    17. A. L. Strecker, Liebigs Ann. Chem. 1850, 75, 27.
    18. A. Hantzsch, Justus Liebegs Ann. Chem. 1882, 215, 1.
    19. A. Hantzsch, Ber. Dtsch. Chem. Ges. 1890, 23, 1474.
    20. O. Kappe, Acc. Chem. Res. 2000, 33, 879.
    21. S. F. Martin, Acc. Chem. Res. 2002, 35, 895.
    22. N. A. Petasis and I. Akritopoulou, Tetrahedron Lett. 1993, 34, 583.
    23. R. K. Jr, Boeckman, K. F. Bigasiewicz, D. J. Tusch and J. R. Miller, J.Org.Chem, 2015, 80, 4030.
    24. For photoredox catalysis (Ru, -Ir); (a) C. K. Prier, D. A Rankic and D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; for copper-photoredox catalysis; (b) S. Paria and O. Reiser, Chem. Cat. Chem., 2014, 6, 2477; (c) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science., 2012, 338, 647; (d) D. T. Ziegler, J. Choi, J. M. Muñoz-Molina, A. Bissember, J. C. Peters and G. C. Fu, J. Am. Chem. Soc., 2013, 135, 13107; (e) L. Gu, C. Jin, J. Liu, H. Zhang, M. Yuan and G. Li, Green Chem., 2016, 18, 1201.
    25. (a) A. Sagadevan and K. C. Hwang, Adv. Synth. Catal., 2012, 354, 3421;(b) A. Sagadevan, A. Ragupathi and K. C. Hwang, Photochem. Photobiol. Sci., 2013, 12, 2110; (c) A. Sagadevan, A. Ragupathi, C.-C. Lin, J. R. Hwu and K. C. Hwang, Green Chem., 2015, 17, 1113; (d) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (e) A. Sagadevan, P. C. Lyu and K. C. Hwang, Green Chem., 2016, 18, 4526. (f) A. Sagadevan, V. P. Charpe and K. C. Hwang, Catal. Sci. Technol. 2016, 6, 7688.
    26. (a) C. Sambiagio, S. P. Marsden, A. J. Blacker and P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525; (b) F. Monnier and M.Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954.
    27. H. Musso, Angew. Chem. Int. Ed. Engl. 1963, 2, 723.
    28. A. Sagadevan, V. P. Charpe, A. Ragupathi and K. C. Hwang, J. Am. Chem. Soc., 2017, 139, 2896.

    1. (a) K. Godula and D. Sames, Science 2006, 312, 67; (b) G. Zeni and R. C. Larock, Chem. Rev. 2006, 106, 4644; (c) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev. 2007, 107, 174; (d) C. J. Rohbogner, G. C. Clososki and P. Knochel, Angew. Chem., Int. Ed., 2008, 120, 1526; (e) X. Chen, K. M. Engle, D. H. Wang and J. Q. Yu, Angew. Chem., Int. Ed., 2009, 121, 5196; (f) A. A. Kulkarni, O. Daugulis, Synthesis, 2009, 4087; (g) W. R. Gutekunst and P. S. Baran, Chem. Soc. Rev. 2011, 40, 1976; (h) C. Liu, H. Zhang, W. Shi, and A. Lei, Chem. Rev. 2011, 111, 1780.
    2. T. Bruckl, R. D. Baxter, Y. Ishihara, and P. S. Baran, Acc. Chem. Res.2011, 45,826.
    3. T. Punniyamurthy, S. Velusamy, and J. Iqbal, Chem. Rev. 2005, 105, 2329.
    4. (a) E. M. Simmons and J. F. Hartwig, Nature 2012, 483, 70; (b) Y. Feng and G. Chen, Angew. Chem., Int. Ed., 2010, 49, 958; (c) K. Godula, and D. Sames, Science 2006, 312, 67; (d) T. Bruckl, R. D. Baxter, Y. Ishihara and P. S. Baran, Acc. Chem. Res.2011, 45, 826.
    5. X. Wu, K. Yang, Y. Zhao, H. Sun, G. Li and H. Ge, Nat. Commun., 2015, 6, 6462.
    6. J. M. Howell, K. Feng, J. R. Clark, L. J. Trzepkowski and M. C. White, J. Am. Chem. Soc, 2015, 137, 14590.
    7. S. E. Ammann, W. Liu and M. C. White, Angew. Chem., Int. Ed., 2016, 55, 9571.
    8. (a) E. Balaraman, E. Khaskin, G. Leitus and D. Milstein, Nat. Chem, 2013, 5,122; (b) K. I. Fujita, N. Tanino and R. Yamaguchi, Org. Lett., 2007, 9,109.
    9. (a) R. Bernini, G. Gualandi, C. Crestini, M. Barontini, M. C. Belfiore, S. Willför, P. Eklund and R. Saladino, Bioorg. Med. Chem. 2009, 17, 5676; (b) S. M. Kupchan, M. A. Eakin and A. M. Thomas, J. Med. Chem., 1971, 14, 1147; (c) J. Posakony, M. Hirao, S. Stevens, J. A. Simon and A. Bedalov, J. Med. Chem., 2004, 47, 2635; (d) S. K. Mandal, M. Paira and S. C. Roy, J. Org. Chem., 2008, 73, 3823; (e) S. Wagner, R. Arce, R. Murillo, L. Terfloth, J. Gasteiger and I. Merfort, J. Med. Chem., 2008, 51, 1324.
    10. (a) Y.Shao, F. Zhang, J. Zhang and X. Zhou, Angew. Chem. Int. Ed. 2016, 55, 11485; (b) X. Huang, X. Li, M. Zou, S. Song, C. Tang, Y. Yuan, and N. Jiao, J. Am. Chem. Soc. 2014, 136, 14858.
    11. A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem. Int. Ed. 2011, 50, 11062.
    12. S. Gligorovski, R. Strekowski, S. Barbati and D.Vione, Chem. Rev. 2015, 115, 13051.
    13. J. Barbara, F. Pitts and J. N. Pitts Jr, Science 1997, 276, 1045.
    14. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17 (2), 513.
    15. B. Ervens, S. Gligorovski and H. Herrmann, Phys. Chem. Chem. Phys., 2003, 5 (9), 1811.
    16. P. Wardman, J. Phys. Chem. Ref. Data, 1989, 18 (4), 1637.
    17. K. C. Hwang and A. Sagadevan, Science, 2014, 346, 1495.
    18. R. Mazitschek, M. Mulbaier and A. Giannis, Angew. Chem. Int. Ed. 2002, 41, 4059.
    19. B. L. Nahara and A. B.Turne, Journal of chemical research. 2004, 4, 329.
    20. C. C. Price and A. L. Tumolo, J. Am. Chem. Soc, 1964, 86 (21), 4691.
    21. V. I. Stenberg, R. D. Olen, C. T.Wang and N. Kulevery, J. Org. Chem, 1967, 32(10), 3227.
    22. R. V. Ottenbacher, E. P.Talsi and K. P. Bryliakov, Molecules, 2016, 21, 1454.
    23. E. Finkelstein, G. M. Rosen and E. J. Rauckman, Arch. Biochem. Biophys. 1980, 200, 1.

    1. T. E. Doll and F.H. Frimmel. Catalysis Today, 2005, 101, 195.
    2. F.wania and D.Mackay. Environ. Sci. Technol, 1996, 30, 390A.
    3. S. Tanabe, Marine Pollution Bulletin, 2002, 45, 69.
    4. C. H. Walker, "Organic Pollutants, an Eco toxicological Perspective", 2001.
    5. K.C. Jones, P. de Voogt, Environmental Pollution, 1999, 100, 209.
    6. L. Ritter, K.R. Solomon, J. Forget, Persistent Organic Pollutants, (The International Programme on Chemical Safety) (IPCS).
    7. P. I. Nikel, D. Pe´rez-Pantoja and V. de Lorenzo, Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1, 3-dichloprop-1-ene, metabolism by Pseudomonas pavonaceae. Phil Trans R Soc B 368:20120377. http://dx.doi.org/10.1098/rstb.2012.0377,
    8. Stockholm Convention on Persistent Organic Pollutants, 1.
    9. E. M. Urreaa, M. P. Trujillo, G. Caminal, and T. Vicent, Journal of Hazardous Materials, 2009, 166, 1141.
    10. R. S. Alvarez, and J. A. Field, Chemosphere, 2008, 71, 1005.
    11. K. Hashimoto, S. Suga, Y. Wakayama and T. Funazukuri, J Mater Sci, 2008, 43, 2457.
    12. G. J. Hutchings, C.S. Heneghan, I. D. Hudson and S.M. Taylor, Nature, 1996, 384, 341.
    13. C. Grittin, M. Malcomson, Q. Fernando and N. Korte, Environ. Sci. Technol, 1995, 29, 2898.
    14. S. Zhang and J. F. Rusllng, Environ. Sci. Technol, 1993, 27, 1375.
    15. H. Einaga and S. Futamura, J. Catalysis, 2006, 243, 446.
    16. K. C. Hwang and A. Sagadevan, Science, 2014, 346, 1495.
    17. J. Cerkovnik, E. Erzen, J. Koller and B. Plesnicar, J. Am. Chem. Soc. 2002, 124, 404.

    1. See for examples; (a) K. Miyamoto, N. Tada and M. Ochiai, J. Am. Chem. Soc., 2007, 129, 2772; (b) T. Seiser, O. A. Roth and N. Cramer, Angew. Chem., Int. Ed., 2009, 48, 6320; (c) C. Najera and J. M. Sansano, Angew. Chem., Int. Ed., 2009, 48, 2452; (d) T. Seiser and N. Cramer, J. Am. Chem. Soc., 2010, 132, 5340; (e) H. Li, Y. Li, X. S. Zhang, K. Chen, X. Wang and Z. J. Shi, J. Am. Chem. Soc., 2011, 133, 15244.
    2. For selected reviews see: (a) C. H. Jun, Chem. Soc. Rev., 2004, 33, 610; (b) Y.J. Park, J. W. Park and C.H. Jun, Acc. Chem. Res., 2008, 41, 222; (c) M. Murakami and T. Matsuda, Chem. Commun., 2011, 47, 1100.
    3. Selected examples; (a) F. Chen, T. Wang and N. Jiao, Chem. Rev., 2014, 114, 8613; (b) T. Wang and N. Jiao, Acc. Chem. Res., 2014, 47, 1137; (c) M. Gaydou and A. M. Echavarren, Angew. Chem. Int. Ed., 2013, 52, 13468; Selected examples; for Ru metal: (d) S. Datta, C.-L. Chang, K.-L. Yeh and R.-S. Liu, J. Am. Chem. Soc., 2003, 125, 9294; for Pd: (e) A.-Z. Wang and H.-F. Jiang, J. Am. Chem. Soc., 2008, 130, 5030; for Ag: (f) T. Shen, T. Wang, C. Qin and N. Jiao, Angew. Chem., Int. Ed., 2013, 52, 6677; for Au: (g) C. Qin, Y. Su, T. Shen, X. Shi and N. Jiao, Angew. Chem., Int. Ed., 2016, 55, 350; for Rh: (h) C.-H. Jun, H. Lee, C. W. Moon and H.-S. Hong, J. Am. Chem. Soc., 2001, 123, 8600.
    4. R. M. Moriarty, R. Penmasta, A. K. Awasthi and I. Prakash, J. Org. Chem., 1988, 53, 6124.
    5. Y. Sawaki, H. Inoue and Y. Ogata, Bull. Chem. Soc. Jpn., 1983, 56, 1133.
    6. C. Shunyou , Z. Xinyang, W. Xinbo, L. Qisong , L. Zigang and D. Z. Wang, Angew. Chem. Int. Ed., 2012, 51, 8050.
    7. (a) H.W. Shih, M. N. Vander Wal, R. L. Grange and D. W. C. MacMillan, J. Am. Chem. Soc., 2010, 132, 13600; (b) M. Neumann, S. Füldner, B. König and K. Zeitler, Angew. Chem. Int. Ed., 2011, 50, 951; (c) D. A. Nagib, M. E. Scott and D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 10875; (d) D. A. Nicewicz and D. W. C. MacMillan, Science., 2008, 322, 77.
    8. (a) Z. Lu, M. Shen and T. P. Yoon, J. Am. Chem. Soc., 2011, 133, 1162; (b) M. A. Ischay, Z. Lu and T. P. Yoon, J. Am. Chem. Soc., 2010, 132, 8572; (c) J. D. Crowley, S. M. Goldup, A.-L. Lee, D. A. Leigh and R. T. McBurney, Chem. Soc. Rev., 2009, 38, 1530; (d) M. A. Ischay, M. E. Anzovino, J. Du and T. P. Yoon, J. Am. Chem. Soc., 2008, 130, 12886.
    9. (a) L. Furst, J. M. R. Narayanam and C. R. J. Stephenson, Angew. Chem. Int. Ed., 2011, 50, 9655; (b) J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson, J. Am. Chem. Soc., 2009, 131, 8756.
    10. (a) M. Rueping, C. Vila, R. M. Koenigs, K. Poscharny and D. C. Fabry, Chem. Commun., 2011, 47, 2360; (b) P. V. Pham, D. A. Nagib and D. W. C. MacMillan, Angew. Chem. Int. Ed., 2011, 50, 6119; (c) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev., 2007, 107, 2725.
    11. C. Zhu, R. Wang and J. R. Falck, Chem. Eur. J., 2012, 7, 1502.
    12. R. M. Al-Zoubi, O. Marion and D. G. Hall, Angew. Chem. Int. Ed., 2008, 47, 2876.
    13. D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Jr. Leazer, R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks and T. Y. Zhang, Green Chem., 2007, 9, 411.
    14. A. L. J. Beckwith, In the Chemistry of Amides. ed. J. Zabicky, Interscience: London, 1970, p.73.
    15. Y. S. Klausner and M. Bodansky, Synthesis., 1972, 453.
    16. B. C. Challis and J. A. Challis, In Comprehensive Organic Chemistry. ed. D. H. R. Barton, W. D. Ollis, Pergamon: Oxford, 1979, vol. 2, p. 957.
    17. S. R. Sandler and W. Karo, In Organic Functional Group Preparations, ed. H. H. Wasserman, Academic, New York, 2nd edn. 1983, vol. 1, p. 315.
    18. G. Benz, In Comprehensive Organic Synthesis., ed. B. M. Trost, Pergamon: Oxford, 1991, vol. 6, p. 381.
    19. M. B. Smith and J. March, March’s Advanced Organic Chemistry., 6th edition, Willey- Interscience, New Jersey, USA, 2007.
    20. H. Charville, D. Jackson, G. Hodges and A. Whiting, Chem. Commun., 2010, 46, 1813.
    21. (a) Synthetic Reagents, ed. J. S. Pizey, Wiley: New York, 1974, vol.1, p. 321. (b) Handbook of Reagents for Organic Synthesis: Activating Agents and Protecting Groups, ed. A. J. Pearson and W. R. Roush, Wiley: New York, 1999, 370; (c) W. Chu, Z. Tu, E. McElveen, J. Xu, M. Taylor, R. R. Luedtke and R. H. Mach, Bioorg. Med. Chem., 2005, 13, 77.
    22. (a) R. Adams and L. H. Ulrich, J. Chem. Soc., 1920, 42, 599; (b) I. Kuwajima, H. Urabe, In Organic Syntheses, Wiley: New York, 1993, Collect. Vol. VIII, p. 486.
    23. S. Knnap and F. S. Gibson, In Organic Syntheses, Wiley: New York, 1998, Collect. Vol. IX, p-516.
    24. T. Shioiri, K. Ninomiya and S. Y. Yamada, J. Am. Chem. Soc., 1972, 94, 6203.
    25. M. Mikolajczyk and P. Kielbasinski, Tetrahedron., 1981, 37, 233.
    26. C. Kunishima, C. Kawashi, J. Morita, K. Terao, F. Iwasaki and S. Tani, Tetrahedron, 1999, b, 13159.
    27. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals (Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, 2nd ed., 2004, vol. 1 and 2.
    28. (a) M. Vazquez-Tato, Synlett, 1993, 556; (b) B. Baldwin, T. Hirose and Z. Wang, Chem. Commun., 1996, 2269; (c) R. Varma and K. Naicker, Tetrahedron Lett., 1999, 40, 6177; (d) L. Perreux and A. Loupy, Tetrahedron, 2001, 57, 9199; (e) L. Perreux, A. Loupy and F. Volatron, Tetrahedron, 2002, 58, 2155-2162; (f) D. Sauer, D. Kalvin and K. Phelan, Org. Lett., 2003, 5, 4721; (g) A. Khalafi-Nezhad, B. Mokhtari and M. N. S. Rad, Tetrahedron Lett., 2003, 44, 7325; (h) E. Gelens, L. Sliedregt, B. Van Steen, C. Kruse, R. Leurs and R. V. Orru, Tetrahedron Lett., 2005, 46, 3751.
    29. (a) P. Tang, Org. Synth., 2005, 81, 262; (b). K. Arnold, B. Davies, R. Giles, C. Grosjean, G. Smith and A. Whiting, Adv. Synth. Catal., 2006, 348, 813.
    30. (a) J. Cossy and C. Pale-Grosdemange, Tetrahedron Lett., 1989, 30, (21), 2771; (b). B. S. Jursic and Z. Zadravkovski, Synth. Commun., 1993, 23, 2761; (c). H. Fukushima, H. Nakatani, Y. Nawashiro, T. Seki, Y. Suzuki and K. Toki, US3551462, 1970, Smitomo Chemical Co.
    31. K. Arnold, B. Davies, D. Hérault and A. Whiting, Angew. Chem. Int. Ed., 2008, 47, 2673.
    32. (a) L. Ferrins, M. Gazdik, R. Rahmani, S. Varghese, M. L. Sykes, A. J. Jones, V. M. Avery, K. L. White, E. Ryan, S. A. Charman, M. Kaiser, C. A. S. Bergström and J. B. Baell, J. Med. Chem., 2014, 57, 6393; (b) L. H. Heitman, J. D. Veldhoven, A. Zweemer, K. Ye, J. Brussee and A. P. IJzerman, J. Med. Chem., 2008, 51, 4724; (c) F. M. Matschinsky, Nature Rev. Drug Discove., 2009, 8, 399.
    33. (a) R. Deshidi, M. A. Rizvi and B. A. Shah, RSC Adv., 2015, 5, 90521; (b) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 6.
    34. M. P. Cassidy, J. Raushel and V. V. Fokin, Angew. Chem., Int. Ed., 2006, 45, 3154.
    35. M. Kohn and R. Breinbauer, Angew. Chem., Int. Ed., 2004, 43, 3106.
    36. For amidation of benzylalcohol; (a) S. Selvamurugan, R. Ramachandran, G. Prakash, P. Viswanathamurthi, J. G. Malecki, A. Endo, J. Organomet. Chem., 2016, 803, 119; (b) amidation of ketone; W. Ding and Q. Song, Org. Chem. Front., 2015, 2, 765; (c) X. Huang, X. Li, M. Zou, S. Song, C. Tang, Y. Yuan and N. Jiao, J. Am. Chem. Soc., 2014, 136, 14858, and references therein.
    37. Other methods; (a) S. M. Crawford, C. B. Lavery and M. Stradiotto, Chem. Eur. J., 2013, 19, 16760; (b) L. Gu, W. Wang, J. Liu, G. Li and M. Yuan, Green Chem., 2016, 18, 2604.
    38. (a) Q. Shen, S. Shekhar, J. P. Stambuli and J. F. Hartwig, Angew. Chem. Int. Ed., 2005, 44, 1371; (b) J. M. Muñoz, J. Alcázar, A. de la Hoz, Á. Díaz-Ortiz and S. A. Alonso de Diego, Green Chem., 2012, 14, 1335; (C) S. K. Hoon and H. S. Chang, Org. Lett., 2003, 15, 2687.
    39. S. Yang, H. Yan, X. Ren, X. Shi, J. Li, Y. Wang and G. Huang, Tetrahedron., 2013, 69, 6431.
    40. O. P. S. Patel, D. Anand, R. K. Maurya and P. P. Yadav, Green Chem., 2015, 17, 3728.
    41. P. Subramanian, S. Indu and K. P. Kaliappan, Org. Lett., 2014, 16, 6212.
    42. Cyclic product; (a) J. Zeng, Y. J. Tan, M. L. Leow and X.-W. Liu, Org. Lett., 2012, 14, 4386; (b) C. He, J. Hao, H. Xu, Y. Mo, H. Liu, J. Han and A. Lei, Chem. Comm., 2012, 48, 11073.
    43. Ciamician, G. Science., 1912, 36, 385.
    44. For selective reviews on important bond formations by photocatalysis see: (a) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev., 2007, 107, 2725; (b) N. Hoffmann, Chem. Rev. 2008, 108, 1052. (c) J. Svoboda and B. König, Chem. Rev., 2006, 106, 5413; (d) T. Bach, Synthesis 1998, 683.
    45. For fine chemical synthesis with sunlight, see: P. Esser, B. Pohlmann and H.D. Scharf, Angew. Chem., Int. Ed., 1994, 33, 2009.
    46. For recent reviews on visible light photocatalysis see: (a) F. Teply, Collect. Czech. Chem. Commun. 2011, 76, 859; (b) J. Xuan and W.J. Xiao, Angew. Chem., Int. Ed., 2012, 51, 6828; (c) L. Shi and W. Xia, Chem. Soc. Rev., 2012, 21, 7687; (d) M. A. Ischay and T.P. Yoon, Eur. J. Org. Chem. 2012, 18, 3359; (e) J.W.Tucker and C. R .J. Stephenson, J. Org. Chem. 2012, 77, 1617; (f) Y. M. Xi, H. Yi and A.W. Lei, Org. Biomol. Chem. 2013, 11, 2387.
    47. For photoredox catalysis (Ru, -Ir); (a) C. K. Prier, D. A Rankic and D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; for copper-photoredox catalysis; (b) S. Paria and O. Reiser, ChemCatChem., 2014, 6, 2477; (c) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science., 2012, 338, 647; (d) D. T. Ziegler, J. Choi, J. M. Muñoz-Molina, A. Bissember, J. C. Peters and G. C. Fu, J. Am. Chem. Soc., 2013, 135, 13107; (e) L. Gu, C. Jin, J. Liu, H. Zhang, M. Yuan and G. Li, Green Chem., 2016, 18, 1201.
    48. (a) A. Edel, P. A. Marnot and J. P. Sauvage, Nouv. J. Chim. 1984, 8, 495; (b) R.S. Khnayzer, C. E. McCusker, B. S. Olaiya and F. N. Castellano, J. Am. Chem. Soc. 2010, 135, 14068; (c) S. P. Luo, E. Mejía, A. Friedrich, A. Pazidis, H. Junge, A. E. Surkus, R. Jackstell, S. Denurra, S. Gladiali, S. Lochbrunner, and M. Beller, Angew. Chem. Int. Ed., 2013, 52, 419; (d) E. Mejía, S. P. Luo, M. Karnahl, A. Friedrich, S. Tschierlei, A. E. Surkus, H. Junge, S. Gladiali, S. Lochbrunner and M. Beller, Chem. Eur. J. 19, 15972; For a highlight on noble metal free photocatalytic hydrogen production see: (e) B. van den Bosch, H. C Chen, J. I. van der Vlugt, A. M. Brouwer and J. N. H. Reek, Chem. Sus. Chem, 2013, 6, 790.
    49. (a) A. Sagadevan and K. C. Hwang, Adv. Synth. Catal, 2012, 354, 3421; (b) A. Sagadevan, A. Ragupathi and K. C. Hwang, Photochem. Photobiol. Sci., 2013, 12, 2110; (c) A. Sagadevan, A. Ragupathi, C.-C. Lin, J. R. Hwu and K. C. Hwang, Green Chem., 2015, 17, 1113; (d) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (e) A. Sagadevan, P. C. Lyu and K. C. Hwang, Green Chem., 2016, 18, 4526. (f) A. Sagadevan, V. P. Charpe and K. C. Hwang, Catal. Sci. Technol. 2016, 6, 7688.
    50. (a) M. Gholami and R. R. Tykwinski, Chem. Rev., 2006, 106, 4997; (b) R. Chinchilla and C. Najera, Chem. Soc. Rev., 2011, 40, 5084.
    51. CCDC 1476789 (4k) contains the supplementary crystallographic data for this work.
    52. J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302, and references therein.
    53. (a) S. D. McCann and S. S. Stahl, Acc. Chem. Res., 2015, 48, 1756; (b) K. K. Toh, Y.-F. Wang, E. P. J. Ng and S. Chiba, J. Am. Chem. Soc., 2011, 133, 13942.
    54. V. W.-Yam, K. K.-W. Lo and K. M.-C. Wong, J. Organomet. Chem., 1999, 578, 3.
    55. M. Majek and A. Jacobi von Wangelin, Angew. Chem., Int. Ed., 2013, 52, 5919.
    56. A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem., Int. Ed., 2011, 50, 11062.
    57. J. Li and L. Neuville, Org. Lett., 2013, 15, 1752.
    58. S. E. Allen, R. R. Walvoord, R. P. Salinas and M. C. Kozlowski, Chem. Rev., 2013, 113, 6234.
    59. A. G. Condie, J. C. González-Gómez and C. R. J. Stephenson, J. Am. Chem. Soc., 2010, 132, 1464.
    60. (a) G. K. Friestad, Tetrahedron, 2001, 57, 5461; (b) T. Xiong and Q. Zhang, Chem. Soc. Rev., 2016, 45, 3069; (c) L. Zhou, S. Tang, X. Qi, C. Lin, K. Liu, C. Liu, Y. Lan and A. Lei, Org. Lett., 2014, 16, 3404.

    1. For reviews on aerobic oxidative reactions. See: (a) S. S. Stahl, Angew. Chem. Int. Ed., 2004, 43, 3400; (b) Z. Shi, C. Zhang, C. Tang and N. Jiao, Chem. Soc. Rev., 2012, 41, 3381; (c) A. N. Campbell and S. S. Stahl, Acc. Chem. Res., 2012, 45, 851; (d) S. D. McCann and S. S. Stahl, Acc. Chem. Res., 2015, 48, 1756.
    2. (a) F. Chen, T. Wang and N. Jiao, Chem. Rev., 2014, 114, 8613; (b) T. Wang and N. Jiao, Acc. Chem. Res., 2014, 47, 1137; (c) N. J. Turro, V. Ramamurthy, K.-C. Liu, A. Krebs and R. Kemper, J. Am. Chem. Soc. 1976, 98, 6758; (d) M. Sasaki, M. Ando, M. Kawahata, K. Yamaguchi and K. Takeda, Org. Lett. 2016, 18, 1598.
    3. (a) R. Chinchilla and C. Nájera, Chem. Rev., 2014, 114, 1783; (b) S. Chen, Z. Liu, E. Shi, L. Chen, W. Wei, H. Li, Y. Cheng and X. Wan, Org. Lett., 2011, 13, 2274; (c) W. Ren, Y. Xia, S.-J. Ji, Y. Zhang, X. Wan and J. Zhao, Org. Lett., 2009, 11, 1841; Metal-free: (d) X. Liu, T. Cong, P. Liu and P. Sun, J. Org. Chem., 2016, 10.1021/acs.joc.6b00097.
    4. (a) X.-N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski and R. P. Hsung, Acc. Chem. Res., 2014, 47, 560; (b) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and R. P. Hsung, Chem. Rev., 2010, 110, 5064; (c) G. Evano, A. Coste, and K. Jouvin, Angew. Chem., Int. Ed. 2010, 49, 2840.
    5. (a) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 15372; (b) S. A. Gawade, D. B. Huple, R.-S. Liu, J. Am. Chem. Soc., 2014, 136, 2978; (c) A. Siva Reddy, A. L. Siva Kumari, S. Saha, K. C. Kumara Swamy, Adv. Synth. Catal., 2016, 358, 1625; (d) C. Shu, Y.-H. Wang, C.-H. Shen, P.-P. Ruan, X. Lu and L.-W. Ye, Org. Lett., 2016, 18, 3254; (e) S. N. Karad and R.-S. Liu, Angew. Chem., Int. Ed., 2014, 53, 9072; (f) J. Zhang, Q. Zhang, B. Xia, J. Wu, X.-N. Wang, J. Chang, Org. Lett., 2016, 18, 3390.
    6. (a) S. M. Kim, I. S Byun and Y. H. Kim, Angew. Chem., Int. Ed. 2000, 39, 728; (b) J.-H. Chen, U. Venkatesham, L.-C. Lee, and K. Chen, Tetrahedron 2006, 62, 887; (c) S. W. Young, Y. H. Kim, J.-W. Hwang and Y. Do, Chem. Commun., 2001, 996; (e) M. Kosior, M. Asztemborska and J. Jurczak, Synthesis 2004, 1, 87; (f) L. Yang, D.-X. Wang, Z.-T. Huang and M.-X. Wang, J. Am. Chem. Soc., 2009, 131, 10390; (g) S. R. Ram, A. R. Devi and D. S. Iyengar, Chem. Lett. 2002, 718.
    7. (a) C. De Risi, G. P. Pollini and V. Zanirato, Chem. Rev. 2016, 116, 3241; (b) D. Kumar, S. R. Vemula and G. R. Cook, ACS Catal. 2016, 6, 4920-4945.
    8. (a) C. K. Wada, R. R. Frey, Z. Ji, M. L. Curtin, R. B. Garland, J. H. Holms, J. Li, L. J. Pease, J. Guo, K. B. Glaser, P. A. Marcotte, P. L. Richardson, S. S. Murphy, J. J. Bouska, P. Tapang, T. J. Magoc, D. H. Albert, S. K. Davidsen and M. R. Michaelides, Bioorg. Med. Chem. Lett., 2003, 13, 3331; (b) M. R. Angelastro, S. Mehdi, J. P. Burkhart, N. P. Peet and P. Bey, J. Med. Chem. 1990, 33, 11; (c) T. D. Ocain and D. H. Rich, J. Med. Chem. 1992, 35, 451.
    9. (a) C. Zhang and N. Jiao, J. Am. Chem. Soc. 2010, 132, 28; (b) C. Zhang, C, Z. J. Xu, L. J. Zhang and N. Jiao, Angew.Chem., Int. Ed. 2011, 50, 11088; (c) C. Zhang, X. L. Zong, L. G. Zhang and N. Jiao, Org. Lett. 2012, 14, 3280.
    10. (a) J. Zhang, Y. Wei, S. Lin, F. Liang and P. Liu, Org. Biomol. Chem. 2012, 10, 9237; (b) F.-T. Du and J.-X. Ji, Chem. Sci. 2012, 3, 460; (c) D. Li, M. Wang, J. Liu, Q. Zhao and L. Wang, Chem. Commun., 2013, 49, 3640.
    11. W.-P. Mai, H.-H. Wang, Z.-C. Li, J.-W. Yuan, Y.-M. Xiao, L.-R. Yang, P. Mao and L.-B. Qu, Chem. Commun., 2012, 48, 10117.
    12. (a) W. Wei, Y. Shao, H. Hu, F. Zhang, C. Zhang, Y. Xu and X. Wan, J. Org. Chem., 2012, 77, 7157; (b) X. Zhang, M. Wang, Y. Zhang and L. Wang, RSC Adv., 2013, 3, 1311; (c) Q. Zhao, T. Miao, X. Zhang, W. Zhou and L. Wang, Org. Biomol. Chem. 2013, 11, 1867.
    13. (a) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 6; I2-catalysed method, see: (b) X. Wu, Q. Gao, S. Liu and A. Wu, Org. Lett., 2014, 16, 2888.
    14. (a) Z. F. Al-Rashid, W. L. Johnson, R. P. Hsung, Y. Wei, P.-Y. Yao, R. Liu and K. Zhao, J. Org. Chem., 2008, 73, 8780; (b) C.-F. Xu, M. Xu, Y.-X. Jia and C.-Y. Li, Org. Lett., 2011, 13, 1556; metal-free, see: (c) X. Wu, Q. Gao, S. Liu, and A. Wu, Org. Lett., 2014, 16, 2888; (d)T. Chikugo, Y. Yauchi, M. Ide and T. Iwasawa, Tetrahedron 2014, 70, 3988; using DMDO as oxidant, see: (e) Z. F. Al-Rashid, R. P. Hsung, Org. Lett., 2008, 10, 661.
    15. Light-induced photoredox catalyst, see: (a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem.Rev., 2013, 113, 5322; (b) M. Reckenthäler, A.G. Griesbeck, Adv. Synth. Catal., 2013, 355, 2727; (c) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102; (d) P. Y. Tehshik, A. I. Michael, D. Juana, Nat. Chem., 2010, 2, 527.
    16. Copper-photoredox catalyst, see: (a) M. Pirtsch, S. Paria, T. Matsuno, H. Isobe, O. Reiser, Chem. Eur. J., 2012, 18, 7336; (b) S. Paria and O. Reiser, ChemCatChem., 2014, 6, 2477; (c) A. Baralle, L. Fensterbank, J.-P. Goddard, C. Ollivier, Chem. Eur. J., 2013, 19, 10809; (d) A. C. Hernandez-Perez, S. K. Collins, Angew. Chem. Int. Ed., 2013, 52, 12696; (e) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science., 2012, 338, 647.
    17. Our works see: (a) A. Sagadevan and K. C. Hwang, Adv. Synth. Catal., 2012, 354, 3421; (b) A. Sagadevan, A. Ragupathi, and K. C. Hwang, Photochem. Photobiol. Sci., 2013, 12, 2110; (c) A. Sagadevan, A. Ragupathi, C.–C. Lin, J. R. Hwu and K. C. Hwang, Green Chem., 2015, 17, 1113; (d) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (e) A. Sagadevan, P. C. Lyu, and K. C. Hwang, Green Chem., 2016, 18, 4526; (f) A. Ragupathi, A. Sagadevan, C.-C. Lin, J. R. Hwu, K. C. Hwang, Chem. Commun. 2016, 52, 11756; (g) A. Sagadevan, V. P. Charpe and K. C. Hwang, Catal. Sci. Technol. 2016, 6, 7688.
    18. R. Chinchilla and C. Najera, Chem. Soc. Rev., 2011, 40, 5084.
    19. M. Gholami, and R. R. Tykwinski, Chem. Rev., 2006, 106, 4997.
    20. (a) C. Schuster, K. K. Julich-Gruner, H. Schnitzler, R. Hesse, A. Jäger, A. W. Schmidt and H.-J. Knölker, J. Org. Chem., 2015, 80, 5666; (b) A. W. Schmidt, K. R. Reddy and H.-J. Knölker, Chem. Rev., 2012, 112, 3193.
    21. CCDC 1495656 (2c) & CCDC 1495655 (2d) contain the supplementary crystallographic data for this work.
    22. R. Turgis, I. Billault, S. Acherar, J. Augé and M.-C. Scherrmann, Green Chem., 2013, 15, 1016.
    23. (a) Z. Chen, W. Zeng, H. Jiang and L. Liu, Org. Lett., 2012, 14, 5385; (b) J. Li and L. Neuville, Org. Lett., 2013, 15, 1752; c) S.-U. Kim, Y. Liu, K. M. Nash, J. L. Zweier, A. Rockenbauer and F. A. Villamena, J. Am. Chem. Soc., 2010, 132, 17157.
    24. (a) C. Zhang and N. Jiao, Angew. Chem., Int. Ed., 2010, 49, 6174; (b) K. K. Toh, Y.-F. Wang, E. P. J. Ng and S. Chiba, J. Am. Chem. Soc., 2011, 133, 13942; (c) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas and M. C. Kozlowski, Chem. Rev., 2013, 113, 6234.
    25. H. Wang, Y. Wang, D. Liang, L. Liu, J. Zhang and Q. Zhu, Angew. Chem., Int. Ed., 2011, 50, 5678.
    26. C. Zhang, Z. Xu, L. Zhang and N. Jiao, Angew. Chem., Int. Ed., 2011, 50, 11088.
    27. D. Vasu, H. H. Hung, S. Bhunia, S. A. Gawade, A. Das and R. S. Liu, Angew. Chem., Int. Ed., 2011, 50, 6911.
    28. J. Lee, Y. L. Zhong, R. A. Reamer and D. Askin, Org. Lett. 2003, 5, 4175.

    1. A. R. Tilekar, A. R. Jagdale , G. Kukreja , G. G. Shenoy and N. Sinha, Tetrahedron, http://dx.doi.org/10.1016/j.tetasy.2016.10.014.
    2. (a) F. Ullmann, Chem. Ber. 1903, 36, 2382; (b) I. Goldberg, Chem. Ber. 1906, 39, 1691; (c) M. Kosugi, M. Kameyama and T. Migita, Chem. Lett. 1983, 12, 927; (d) M. S. Driver and J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 7217; (e) D. Chan, Tetrahedron Lett. 1996, 37, 9013; (f) A. S. Guram and S. L. Buchwald, J. Am. Chem. Soc. 1994, 116, 7901.
    3. V. Khedkar, A. Tillack, and M. Beller, Org. Lett., 2003, 5, 4767.
    4. D. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27.
    5. (a) B. P. Fors, D. A. Watson, M. R. Biscoe and S. L. Buchwald, J. Am.Chem. Soc. 2008, 130, 13552; (b) J. F. Hartwig, Synlett, 1997, 329; (c) A. T. Brusoe and J. F. Hartwig, J. Am. Chem. Soc. 2015, 137, 8460.
    6. K. Shin, H. Kim, and S. Chang, Acc. Chem. Res. 2015, 48, 1040.
    7. (a) J. Zhu, Q. Wang and M. Wang, Multicomponent Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2015. (b) Estevez, V.;Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2014, 43, 4633. (c) Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Chem. Rev. 2014, 114, 8323. (d) Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem. 2014, 16, 2958. (e) van der Heijden, G.; Ruijter, E.; Orru, R. V. A. Synlett. 2013, 24, 666.
    8. (a) Theato, P. Multi-Component and Sequential Reactions in Polymer Synthesis; Springer International Publishing: Heidelberg, 2015; Vol. 269. (b) Kakuchi, R. Angew. Chem., Int. Ed. 2014, 53, 46; (c) Rudick, J. G. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3985; (d) Wang, S.; Fu, C.; Wei, Y.; Tao, L. Macromol. Chem. Phys. 2014, 215, 486.
    9. (a) L. Weber, Curr. Med. Chem., 2002, 9, 2085; (b) L. Weber, Drug Discovery Today, 2002, 7, 143; (c) Y. Huang, A. Yazbak and A. Domling, in Multicomponent Reactions in Green Techniques for Organic Synthesis and Medicinal Chemistry, ed. W. Zhang and B. W. Cue, John Wiley & Sons, Ltd, Chichester, UK, 2012, p. 499; (d) C. Kalinski, H. Lemoine, J. Schmidt, C. Burdack, J. Kolb, M. Umkehrer and G. Ross, Synthesis, 2008, 4007.
    10. (a) O. Kreye, T. Tóth, and M. A. R. Meier, J. Am. Chem. Soc. 2011, 133, 1790; (b) X. X. Deng, L. Li, Z. L. Li, A. Lv, F. S. Du and Z. C. Li, ACS Macro Lett. 2012, 1, 1300; (c) L. Li, A. Lv, X. X. Deng, F. S. Du and Z. C. Li, Chem. Commun. 2013, 49, 8549; (d) L. Li, A. Lv, X. X. Deng, F. S. Du and Z. C. Li, Macromolecules 2014, 47, 4660; (e) S. Wang, N. Zhang, X. Ge, Y. Wan, X. Li, L. Yan, Y. Xia and B. Song, Soft Matter, 2014, 10, 4833. (f) P. R. Andreana, C. C. Liu and S. L. Schreiber, Org. Lett., 2004, 6, 4231.
    11. (a)A. Sehlinger, P. K. Dannecker, O. Kreye, and M. A. R. Meier, Macromolecules, 2014, 47, 2774; (b) N. Gangloff, D. Nahm, L. Döring, D. Kuckling, and R. J. Luxenhofer, Polym. Sci., Part A: Polym. Chem. 2015, 53, 1680; (c) B. Yang, Y. Zhao, Y. Wei, C. Fu, and L. Tao, Polym. Chem. 2015, 6, 8233; (d) I. Ugi, R. Meyr, U. Fetzer and C. Steinbrückner, Angew. Chem. 1959, 71, 386; (e) A. Domling and I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168.
    12. (a) I. H. Lee, H. Kim and T. L. Choi, J. Am. Chem. Soc. 2013, 135, 3760; (b) H. Kim, and T. L. Choi, ACS Macro Lett. 2014, 3, 791.
    13. (a) C. Y. K. Chan, N. W .Tseng. J. W. Y Lam, J. Liu, R. T. K. Kwok and B. Z. Tang, Macromolecules 2013, 46, 3246; (b) Y. Liu, M. Gao, J. W. Y. Lam, R. Hu and B. Z. Tang, Macromolecules 2014, 47, 4908.
    14. (a) N. Miyaki, I. Tomita, and T. Endo, Macromolecules 1996, 29, 6685; (d) Y. Zhao, Y. Yu, Y. Zhang, X. Wang, B. Yang, Y. Zhang, Q. Zhang, C. Fu, Y. Wei and L. Tao, Polym. Chem. 2015, 6, 4940.
    15. (a) R. Kakuchi and P. Theato, ACS Macro Lett. 2013, 2, 419; (b) R. Kakuchi, and P. Theato, ACS Macro Lett. 2014, 3, 329; (c) P. R. Bachler, M. D. Schulz, C. A. Sparks, K. B. Wagener and B. S. Sumerlin, Macromol. Rapid Commun. 2015, 36, 828.
    16. (a) T. A. Skotheim and J. R. Reynolds, Handbook of Conducting Polymers, 3rd ed.; CRC Press LCC: Boca Raton, 2007; (b) Facchetti, A. Chem. Mater. 2011, 23, 733; (c) Y. J. Cheng, S. H. Yang and C. S. Hsu, Chem. Rev. 2009, 109, 5868; (d) L. Dou, Y. Liu, Z. Hong, G. Li and Y. Yang, Chem. Rev. 2015, 115, 12633; (e) D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev. 2000, 100, 2537.
    17. A. L. Strecker, Liebigs Ann. Chem. 1850, 75, 27.
    18. A. Hantzsch, Justus Liebegs Ann. Chem. 1882, 215, 1.
    19. A. Hantzsch, Ber. Dtsch. Chem. Ges. 1890, 23, 1474.
    20. O. Kappe, Acc. Chem. Res. 2000, 33, 879.
    21. S. F. Martin, Acc. Chem. Res. 2002, 35, 895.
    22. N. A. Petasis and I. Akritopoulou, Tetrahedron Lett. 1993, 34, 583.
    23. R. K. Jr, Boeckman, K. F. Bigasiewicz, D. J. Tusch and J. R. Miller, J.Org.Chem, 2015, 80, 4030.
    24. For photoredox catalysis (Ru, -Ir); (a) C. K. Prier, D. A Rankic and D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; for copper-photoredox catalysis; (b) S. Paria and O. Reiser, Chem. Cat. Chem., 2014, 6, 2477; (c) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science., 2012, 338, 647; (d) D. T. Ziegler, J. Choi, J. M. Muñoz-Molina, A. Bissember, J. C. Peters and G. C. Fu, J. Am. Chem. Soc., 2013, 135, 13107; (e) L. Gu, C. Jin, J. Liu, H. Zhang, M. Yuan and G. Li, Green Chem., 2016, 18, 1201.
    25. (a) A. Sagadevan and K. C. Hwang, Adv. Synth. Catal., 2012, 354, 3421;(b) A. Sagadevan, A. Ragupathi and K. C. Hwang, Photochem. Photobiol. Sci., 2013, 12, 2110; (c) A. Sagadevan, A. Ragupathi, C.-C. Lin, J. R. Hwu and K. C. Hwang, Green Chem., 2015, 17, 1113; (d) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (e) A. Sagadevan, P. C. Lyu and K. C. Hwang, Green Chem., 2016, 18, 4526. (f) A. Sagadevan, V. P. Charpe and K. C. Hwang, Catal. Sci. Technol. 2016, 6, 7688.
    26. (a) C. Sambiagio, S. P. Marsden, A. J. Blacker and P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525; (b) F. Monnier and M.Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954.
    27. H. Musso, Angew. Chem. Int. Ed. Engl. 1963, 2, 723.
    28. A. Sagadevan, V. P. Charpe, A. Ragupathi and K. C. Hwang, J. Am. Chem. Soc., 2017, 139, 2896.

    1. (a) K. Godula and D. Sames, Science 2006, 312, 67; (b) G. Zeni and R. C. Larock, Chem. Rev. 2006, 106, 4644; (c) D. Alberico, M. E. Scott and M. Lautens, Chem. Rev. 2007, 107, 174; (d) C. J. Rohbogner, G. C. Clososki and P. Knochel, Angew. Chem., Int. Ed., 2008, 120, 1526; (e) X. Chen, K. M. Engle, D. H. Wang and J. Q. Yu, Angew. Chem., Int. Ed., 2009, 121, 5196; (f) A. A. Kulkarni, O. Daugulis, Synthesis, 2009, 4087; (g) W. R. Gutekunst and P. S. Baran, Chem. Soc. Rev. 2011, 40, 1976; (h) C. Liu, H. Zhang, W. Shi, and A. Lei, Chem. Rev. 2011, 111, 1780.
    2. T. Bruckl, R. D. Baxter, Y. Ishihara, and P. S. Baran, Acc. Chem. Res.2011, 45,826.
    3. T. Punniyamurthy, S. Velusamy, and J. Iqbal, Chem. Rev. 2005, 105, 2329.
    4. (a) E. M. Simmons and J. F. Hartwig, Nature 2012, 483, 70; (b) Y. Feng and G. Chen, Angew. Chem., Int. Ed., 2010, 49, 958; (c) K. Godula, and D. Sames, Science 2006, 312, 67; (d) T. Bruckl, R. D. Baxter, Y. Ishihara and P. S. Baran, Acc. Chem. Res.2011, 45, 826.
    5. X. Wu, K. Yang, Y. Zhao, H. Sun, G. Li and H. Ge, Nat. Commun., 2015, 6, 6462.
    6. J. M. Howell, K. Feng, J. R. Clark, L. J. Trzepkowski and M. C. White, J. Am. Chem. Soc, 2015, 137, 14590.
    7. S. E. Ammann, W. Liu and M. C. White, Angew. Chem., Int. Ed., 2016, 55, 9571.
    8. (a) E. Balaraman, E. Khaskin, G. Leitus and D. Milstein, Nat. Chem, 2013, 5,122; (b) K. I. Fujita, N. Tanino and R. Yamaguchi, Org. Lett., 2007, 9,109.
    9. (a) R. Bernini, G. Gualandi, C. Crestini, M. Barontini, M. C. Belfiore, S. Willför, P. Eklund and R. Saladino, Bioorg. Med. Chem. 2009, 17, 5676; (b) S. M. Kupchan, M. A. Eakin and A. M. Thomas, J. Med. Chem., 1971, 14, 1147; (c) J. Posakony, M. Hirao, S. Stevens, J. A. Simon and A. Bedalov, J. Med. Chem., 2004, 47, 2635; (d) S. K. Mandal, M. Paira and S. C. Roy, J. Org. Chem., 2008, 73, 3823; (e) S. Wagner, R. Arce, R. Murillo, L. Terfloth, J. Gasteiger and I. Merfort, J. Med. Chem., 2008, 51, 1324.
    10. (a) Y.Shao, F. Zhang, J. Zhang and X. Zhou, Angew. Chem. Int. Ed. 2016, 55, 11485; (b) X. Huang, X. Li, M. Zou, S. Song, C. Tang, Y. Yuan, and N. Jiao, J. Am. Chem. Soc. 2014, 136, 14858.
    11. A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem. Int. Ed. 2011, 50, 11062.
    12. S. Gligorovski, R. Strekowski, S. Barbati and D.Vione, Chem. Rev. 2015, 115, 13051.
    13. J. Barbara, F. Pitts and J. N. Pitts Jr, Science 1997, 276, 1045.
    14. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17 (2), 513.
    15. B. Ervens, S. Gligorovski and H. Herrmann, Phys. Chem. Chem. Phys., 2003, 5 (9), 1811.
    16. P. Wardman, J. Phys. Chem. Ref. Data, 1989, 18 (4), 1637.
    17. K. C. Hwang and A. Sagadevan, Science, 2014, 346, 1495.
    18. R. Mazitschek, M. Mulbaier and A. Giannis, Angew. Chem. Int. Ed. 2002, 41, 4059.
    19. B. L. Nahara and A. B.Turne, Journal of chemical research. 2004, 4, 329.
    20. C. C. Price and A. L. Tumolo, J. Am. Chem. Soc, 1964, 86 (21), 4691.
    21. V. I. Stenberg, R. D. Olen, C. T.Wang and N. Kulevery, J. Org. Chem, 1967, 32(10), 3227.
    22. R. V. Ottenbacher, E. P.Talsi and K. P. Bryliakov, Molecules, 2016, 21, 1454.
    23. E. Finkelstein, G. M. Rosen and E. J. Rauckman, Arch. Biochem. Biophys. 1980, 200, 1.

    1. T. E. Doll and F.H. Frimmel. Catalysis Today, 2005, 101, 195.
    2. F.wania and D.Mackay. Environ. Sci. Technol, 1996, 30, 390A.
    3. S. Tanabe, Marine Pollution Bulletin, 2002, 45, 69.
    4. C. H. Walker, "Organic Pollutants, an Eco toxicological Perspective", 2001.
    5. K.C. Jones, P. de Voogt, Environmental Pollution, 1999, 100, 209.
    6. L. Ritter, K.R. Solomon, J. Forget, Persistent Organic Pollutants, (The International Programme on Chemical Safety) (IPCS).
    7. P. I. Nikel, D. Pe´rez-Pantoja and V. de Lorenzo, Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1, 3-dichloprop-1-ene, metabolism by Pseudomonas pavonaceae. Phil Trans R Soc B 368:20120377. http://dx.doi.org/10.1098/rstb.2012.0377,
    8. Stockholm Convention on Persistent Organic Pollutants, 1.
    9. E. M. Urreaa, M. P. Trujillo, G. Caminal, and T. Vicent, Journal of Hazardous Materials, 2009, 166, 1141.
    10. R. S. Alvarez, and J. A. Field, Chemosphere, 2008, 71, 1005.
    11. K. Hashimoto, S. Suga, Y. Wakayama and T. Funazukuri, J Mater Sci, 2008, 43, 2457.
    12. G. J. Hutchings, C.S. Heneghan, I. D. Hudson and S.M. Taylor, Nature, 1996, 384, 341.
    13. C. Grittin, M. Malcomson, Q. Fernando and N. Korte, Environ. Sci. Technol, 1995, 29, 2898.
    14. S. Zhang and J. F. Rusllng, Environ. Sci. Technol, 1993, 27, 1375.
    15. H. Einaga and S. Futamura, J. Catalysis, 2006, 243, 446.
    16. K. C. Hwang and A. Sagadevan, Science, 2014, 346, 1495.
    17. J. Cerkovnik, E. Erzen, J. Koller and B. Plesnicar, J. Am. Chem. Soc. 2002, 124, 404.

    1. See for examples; (a) K. Miyamoto, N. Tada and M. Ochiai, J. Am. Chem. Soc., 2007, 129, 2772; (b) T. Seiser, O. A. Roth and N. Cramer, Angew. Chem., Int. Ed., 2009, 48, 6320; (c) C. Najera and J. M. Sansano, Angew. Chem., Int. Ed., 2009, 48, 2452; (d) T. Seiser and N. Cramer, J. Am. Chem. Soc., 2010, 132, 5340; (e) H. Li, Y. Li, X. S. Zhang, K. Chen, X. Wang and Z. J. Shi, J. Am. Chem. Soc., 2011, 133, 15244.
    2. For selected reviews see: (a) C. H. Jun, Chem. Soc. Rev., 2004, 33, 610; (b) Y.J. Park, J. W. Park and C.H. Jun, Acc. Chem. Res., 2008, 41, 222; (c) M. Murakami and T. Matsuda, Chem. Commun., 2011, 47, 1100.
    3. Selected examples; (a) F. Chen, T. Wang and N. Jiao, Chem. Rev., 2014, 114, 8613; (b) T. Wang and N. Jiao, Acc. Chem. Res., 2014, 47, 1137; (c) M. Gaydou and A. M. Echavarren, Angew. Chem. Int. Ed., 2013, 52, 13468; Selected examples; for Ru metal: (d) S. Datta, C.-L. Chang, K.-L. Yeh and R.-S. Liu, J. Am. Chem. Soc., 2003, 125, 9294; for Pd: (e) A.-Z. Wang and H.-F. Jiang, J. Am. Chem. Soc., 2008, 130, 5030; for Ag: (f) T. Shen, T. Wang, C. Qin and N. Jiao, Angew. Chem., Int. Ed., 2013, 52, 6677; for Au: (g) C. Qin, Y. Su, T. Shen, X. Shi and N. Jiao, Angew. Chem., Int. Ed., 2016, 55, 350; for Rh: (h) C.-H. Jun, H. Lee, C. W. Moon and H.-S. Hong, J. Am. Chem. Soc., 2001, 123, 8600.
    4. R. M. Moriarty, R. Penmasta, A. K. Awasthi and I. Prakash, J. Org. Chem., 1988, 53, 6124.
    5. Y. Sawaki, H. Inoue and Y. Ogata, Bull. Chem. Soc. Jpn., 1983, 56, 1133.
    6. C. Shunyou , Z. Xinyang, W. Xinbo, L. Qisong , L. Zigang and D. Z. Wang, Angew. Chem. Int. Ed., 2012, 51, 8050.
    7. (a) H.W. Shih, M. N. Vander Wal, R. L. Grange and D. W. C. MacMillan, J. Am. Chem. Soc., 2010, 132, 13600; (b) M. Neumann, S. Füldner, B. König and K. Zeitler, Angew. Chem. Int. Ed., 2011, 50, 951; (c) D. A. Nagib, M. E. Scott and D. W. C. MacMillan, J. Am. Chem. Soc., 2009, 131, 10875; (d) D. A. Nicewicz and D. W. C. MacMillan, Science., 2008, 322, 77.
    8. (a) Z. Lu, M. Shen and T. P. Yoon, J. Am. Chem. Soc., 2011, 133, 1162; (b) M. A. Ischay, Z. Lu and T. P. Yoon, J. Am. Chem. Soc., 2010, 132, 8572; (c) J. D. Crowley, S. M. Goldup, A.-L. Lee, D. A. Leigh and R. T. McBurney, Chem. Soc. Rev., 2009, 38, 1530; (d) M. A. Ischay, M. E. Anzovino, J. Du and T. P. Yoon, J. Am. Chem. Soc., 2008, 130, 12886.
    9. (a) L. Furst, J. M. R. Narayanam and C. R. J. Stephenson, Angew. Chem. Int. Ed., 2011, 50, 9655; (b) J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson, J. Am. Chem. Soc., 2009, 131, 8756.
    10. (a) M. Rueping, C. Vila, R. M. Koenigs, K. Poscharny and D. C. Fabry, Chem. Commun., 2011, 47, 2360; (b) P. V. Pham, D. A. Nagib and D. W. C. MacMillan, Angew. Chem. Int. Ed., 2011, 50, 6119; (c) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev., 2007, 107, 2725.
    11. C. Zhu, R. Wang and J. R. Falck, Chem. Eur. J., 2012, 7, 1502.
    12. R. M. Al-Zoubi, O. Marion and D. G. Hall, Angew. Chem. Int. Ed., 2008, 47, 2876.
    13. D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Jr. Leazer, R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks and T. Y. Zhang, Green Chem., 2007, 9, 411.
    14. A. L. J. Beckwith, In the Chemistry of Amides. ed. J. Zabicky, Interscience: London, 1970, p.73.
    15. Y. S. Klausner and M. Bodansky, Synthesis., 1972, 453.
    16. B. C. Challis and J. A. Challis, In Comprehensive Organic Chemistry. ed. D. H. R. Barton, W. D. Ollis, Pergamon: Oxford, 1979, vol. 2, p. 957.
    17. S. R. Sandler and W. Karo, In Organic Functional Group Preparations, ed. H. H. Wasserman, Academic, New York, 2nd edn. 1983, vol. 1, p. 315.
    18. G. Benz, In Comprehensive Organic Synthesis., ed. B. M. Trost, Pergamon: Oxford, 1991, vol. 6, p. 381.
    19. M. B. Smith and J. March, March’s Advanced Organic Chemistry., 6th edition, Willey- Interscience, New Jersey, USA, 2007.
    20. H. Charville, D. Jackson, G. Hodges and A. Whiting, Chem. Commun., 2010, 46, 1813.
    21. (a) Synthetic Reagents, ed. J. S. Pizey, Wiley: New York, 1974, vol.1, p. 321. (b) Handbook of Reagents for Organic Synthesis: Activating Agents and Protecting Groups, ed. A. J. Pearson and W. R. Roush, Wiley: New York, 1999, 370; (c) W. Chu, Z. Tu, E. McElveen, J. Xu, M. Taylor, R. R. Luedtke and R. H. Mach, Bioorg. Med. Chem., 2005, 13, 77.
    22. (a) R. Adams and L. H. Ulrich, J. Chem. Soc., 1920, 42, 599; (b) I. Kuwajima, H. Urabe, In Organic Syntheses, Wiley: New York, 1993, Collect. Vol. VIII, p. 486.
    23. S. Knnap and F. S. Gibson, In Organic Syntheses, Wiley: New York, 1998, Collect. Vol. IX, p-516.
    24. T. Shioiri, K. Ninomiya and S. Y. Yamada, J. Am. Chem. Soc., 1972, 94, 6203.
    25. M. Mikolajczyk and P. Kielbasinski, Tetrahedron., 1981, 37, 233.
    26. C. Kunishima, C. Kawashi, J. Morita, K. Terao, F. Iwasaki and S. Tani, Tetrahedron, 1999, b, 13159.
    27. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals (Eds.: M. Beller, C. Bolm), Wiley-VCH, Weinheim, 2nd ed., 2004, vol. 1 and 2.
    28. (a) M. Vazquez-Tato, Synlett, 1993, 556; (b) B. Baldwin, T. Hirose and Z. Wang, Chem. Commun., 1996, 2269; (c) R. Varma and K. Naicker, Tetrahedron Lett., 1999, 40, 6177; (d) L. Perreux and A. Loupy, Tetrahedron, 2001, 57, 9199; (e) L. Perreux, A. Loupy and F. Volatron, Tetrahedron, 2002, 58, 2155-2162; (f) D. Sauer, D. Kalvin and K. Phelan, Org. Lett., 2003, 5, 4721; (g) A. Khalafi-Nezhad, B. Mokhtari and M. N. S. Rad, Tetrahedron Lett., 2003, 44, 7325; (h) E. Gelens, L. Sliedregt, B. Van Steen, C. Kruse, R. Leurs and R. V. Orru, Tetrahedron Lett., 2005, 46, 3751.
    29. (a) P. Tang, Org. Synth., 2005, 81, 262; (b). K. Arnold, B. Davies, R. Giles, C. Grosjean, G. Smith and A. Whiting, Adv. Synth. Catal., 2006, 348, 813.
    30. (a) J. Cossy and C. Pale-Grosdemange, Tetrahedron Lett., 1989, 30, (21), 2771; (b). B. S. Jursic and Z. Zadravkovski, Synth. Commun., 1993, 23, 2761; (c). H. Fukushima, H. Nakatani, Y. Nawashiro, T. Seki, Y. Suzuki and K. Toki, US3551462, 1970, Smitomo Chemical Co.
    31. K. Arnold, B. Davies, D. Hérault and A. Whiting, Angew. Chem. Int. Ed., 2008, 47, 2673.
    32. (a) L. Ferrins, M. Gazdik, R. Rahmani, S. Varghese, M. L. Sykes, A. J. Jones, V. M. Avery, K. L. White, E. Ryan, S. A. Charman, M. Kaiser, C. A. S. Bergström and J. B. Baell, J. Med. Chem., 2014, 57, 6393; (b) L. H. Heitman, J. D. Veldhoven, A. Zweemer, K. Ye, J. Brussee and A. P. IJzerman, J. Med. Chem., 2008, 51, 4724; (c) F. M. Matschinsky, Nature Rev. Drug Discove., 2009, 8, 399.
    33. (a) R. Deshidi, M. A. Rizvi and B. A. Shah, RSC Adv., 2015, 5, 90521; (b) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 6.
    34. M. P. Cassidy, J. Raushel and V. V. Fokin, Angew. Chem., Int. Ed., 2006, 45, 3154.
    35. M. Kohn and R. Breinbauer, Angew. Chem., Int. Ed., 2004, 43, 3106.
    36. For amidation of benzylalcohol; (a) S. Selvamurugan, R. Ramachandran, G. Prakash, P. Viswanathamurthi, J. G. Malecki, A. Endo, J. Organomet. Chem., 2016, 803, 119; (b) amidation of ketone; W. Ding and Q. Song, Org. Chem. Front., 2015, 2, 765; (c) X. Huang, X. Li, M. Zou, S. Song, C. Tang, Y. Yuan and N. Jiao, J. Am. Chem. Soc., 2014, 136, 14858, and references therein.
    37. Other methods; (a) S. M. Crawford, C. B. Lavery and M. Stradiotto, Chem. Eur. J., 2013, 19, 16760; (b) L. Gu, W. Wang, J. Liu, G. Li and M. Yuan, Green Chem., 2016, 18, 2604.
    38. (a) Q. Shen, S. Shekhar, J. P. Stambuli and J. F. Hartwig, Angew. Chem. Int. Ed., 2005, 44, 1371; (b) J. M. Muñoz, J. Alcázar, A. de la Hoz, Á. Díaz-Ortiz and S. A. Alonso de Diego, Green Chem., 2012, 14, 1335; (C) S. K. Hoon and H. S. Chang, Org. Lett., 2003, 15, 2687.
    39. S. Yang, H. Yan, X. Ren, X. Shi, J. Li, Y. Wang and G. Huang, Tetrahedron., 2013, 69, 6431.
    40. O. P. S. Patel, D. Anand, R. K. Maurya and P. P. Yadav, Green Chem., 2015, 17, 3728.
    41. P. Subramanian, S. Indu and K. P. Kaliappan, Org. Lett., 2014, 16, 6212.
    42. Cyclic product; (a) J. Zeng, Y. J. Tan, M. L. Leow and X.-W. Liu, Org. Lett., 2012, 14, 4386; (b) C. He, J. Hao, H. Xu, Y. Mo, H. Liu, J. Han and A. Lei, Chem. Comm., 2012, 48, 11073.
    43. Ciamician, G. Science., 1912, 36, 385.
    44. For selective reviews on important bond formations by photocatalysis see: (a) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, Chem. Rev., 2007, 107, 2725; (b) N. Hoffmann, Chem. Rev. 2008, 108, 1052. (c) J. Svoboda and B. König, Chem. Rev., 2006, 106, 5413; (d) T. Bach, Synthesis 1998, 683.
    45. For fine chemical synthesis with sunlight, see: P. Esser, B. Pohlmann and H.D. Scharf, Angew. Chem., Int. Ed., 1994, 33, 2009.
    46. For recent reviews on visible light photocatalysis see: (a) F. Teply, Collect. Czech. Chem. Commun. 2011, 76, 859; (b) J. Xuan and W.J. Xiao, Angew. Chem., Int. Ed., 2012, 51, 6828; (c) L. Shi and W. Xia, Chem. Soc. Rev., 2012, 21, 7687; (d) M. A. Ischay and T.P. Yoon, Eur. J. Org. Chem. 2012, 18, 3359; (e) J.W.Tucker and C. R .J. Stephenson, J. Org. Chem. 2012, 77, 1617; (f) Y. M. Xi, H. Yi and A.W. Lei, Org. Biomol. Chem. 2013, 11, 2387.
    47. For photoredox catalysis (Ru, -Ir); (a) C. K. Prier, D. A Rankic and D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; for copper-photoredox catalysis; (b) S. Paria and O. Reiser, ChemCatChem., 2014, 6, 2477; (c) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science., 2012, 338, 647; (d) D. T. Ziegler, J. Choi, J. M. Muñoz-Molina, A. Bissember, J. C. Peters and G. C. Fu, J. Am. Chem. Soc., 2013, 135, 13107; (e) L. Gu, C. Jin, J. Liu, H. Zhang, M. Yuan and G. Li, Green Chem., 2016, 18, 1201.
    48. (a) A. Edel, P. A. Marnot and J. P. Sauvage, Nouv. J. Chim. 1984, 8, 495; (b) R.S. Khnayzer, C. E. McCusker, B. S. Olaiya and F. N. Castellano, J. Am. Chem. Soc. 2010, 135, 14068; (c) S. P. Luo, E. Mejía, A. Friedrich, A. Pazidis, H. Junge, A. E. Surkus, R. Jackstell, S. Denurra, S. Gladiali, S. Lochbrunner, and M. Beller, Angew. Chem. Int. Ed., 2013, 52, 419; (d) E. Mejía, S. P. Luo, M. Karnahl, A. Friedrich, S. Tschierlei, A. E. Surkus, H. Junge, S. Gladiali, S. Lochbrunner and M. Beller, Chem. Eur. J. 19, 15972; For a highlight on noble metal free photocatalytic hydrogen production see: (e) B. van den Bosch, H. C Chen, J. I. van der Vlugt, A. M. Brouwer and J. N. H. Reek, Chem. Sus. Chem, 2013, 6, 790.
    49. (a) A. Sagadevan and K. C. Hwang, Adv. Synth. Catal, 2012, 354, 3421; (b) A. Sagadevan, A. Ragupathi and K. C. Hwang, Photochem. Photobiol. Sci., 2013, 12, 2110; (c) A. Sagadevan, A. Ragupathi, C.-C. Lin, J. R. Hwu and K. C. Hwang, Green Chem., 2015, 17, 1113; (d) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (e) A. Sagadevan, P. C. Lyu and K. C. Hwang, Green Chem., 2016, 18, 4526. (f) A. Sagadevan, V. P. Charpe and K. C. Hwang, Catal. Sci. Technol. 2016, 6, 7688.
    50. (a) M. Gholami and R. R. Tykwinski, Chem. Rev., 2006, 106, 4997; (b) R. Chinchilla and C. Najera, Chem. Soc. Rev., 2011, 40, 5084.
    51. CCDC 1476789 (4k) contains the supplementary crystallographic data for this work.
    52. J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302, and references therein.
    53. (a) S. D. McCann and S. S. Stahl, Acc. Chem. Res., 2015, 48, 1756; (b) K. K. Toh, Y.-F. Wang, E. P. J. Ng and S. Chiba, J. Am. Chem. Soc., 2011, 133, 13942.
    54. V. W.-Yam, K. K.-W. Lo and K. M.-C. Wong, J. Organomet. Chem., 1999, 578, 3.
    55. M. Majek and A. Jacobi von Wangelin, Angew. Chem., Int. Ed., 2013, 52, 5919.
    56. A. E. Wendlandt, A. M. Suess and S. S. Stahl, Angew. Chem., Int. Ed., 2011, 50, 11062.
    57. J. Li and L. Neuville, Org. Lett., 2013, 15, 1752.
    58. S. E. Allen, R. R. Walvoord, R. P. Salinas and M. C. Kozlowski, Chem. Rev., 2013, 113, 6234.
    59. A. G. Condie, J. C. González-Gómez and C. R. J. Stephenson, J. Am. Chem. Soc., 2010, 132, 1464.
    60. (a) G. K. Friestad, Tetrahedron, 2001, 57, 5461; (b) T. Xiong and Q. Zhang, Chem. Soc. Rev., 2016, 45, 3069; (c) L. Zhou, S. Tang, X. Qi, C. Lin, K. Liu, C. Liu, Y. Lan and A. Lei, Org. Lett., 2014, 16, 3404.

    1. For reviews on aerobic oxidative reactions. See: (a) S. S. Stahl, Angew. Chem. Int. Ed., 2004, 43, 3400; (b) Z. Shi, C. Zhang, C. Tang and N. Jiao, Chem. Soc. Rev., 2012, 41, 3381; (c) A. N. Campbell and S. S. Stahl, Acc. Chem. Res., 2012, 45, 851; (d) S. D. McCann and S. S. Stahl, Acc. Chem. Res., 2015, 48, 1756.
    2. (a) F. Chen, T. Wang and N. Jiao, Chem. Rev., 2014, 114, 8613; (b) T. Wang and N. Jiao, Acc. Chem. Res., 2014, 47, 1137; (c) N. J. Turro, V. Ramamurthy, K.-C. Liu, A. Krebs and R. Kemper, J. Am. Chem. Soc. 1976, 98, 6758; (d) M. Sasaki, M. Ando, M. Kawahata, K. Yamaguchi and K. Takeda, Org. Lett. 2016, 18, 1598.
    3. (a) R. Chinchilla and C. Nájera, Chem. Rev., 2014, 114, 1783; (b) S. Chen, Z. Liu, E. Shi, L. Chen, W. Wei, H. Li, Y. Cheng and X. Wan, Org. Lett., 2011, 13, 2274; (c) W. Ren, Y. Xia, S.-J. Ji, Y. Zhang, X. Wan and J. Zhao, Org. Lett., 2009, 11, 1841; Metal-free: (d) X. Liu, T. Cong, P. Liu and P. Sun, J. Org. Chem., 2016, 10.1021/acs.joc.6b00097.
    4. (a) X.-N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski and R. P. Hsung, Acc. Chem. Res., 2014, 47, 560; (b) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and R. P. Hsung, Chem. Rev., 2010, 110, 5064; (c) G. Evano, A. Coste, and K. Jouvin, Angew. Chem., Int. Ed. 2010, 49, 2840.
    5. (a) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 15372; (b) S. A. Gawade, D. B. Huple, R.-S. Liu, J. Am. Chem. Soc., 2014, 136, 2978; (c) A. Siva Reddy, A. L. Siva Kumari, S. Saha, K. C. Kumara Swamy, Adv. Synth. Catal., 2016, 358, 1625; (d) C. Shu, Y.-H. Wang, C.-H. Shen, P.-P. Ruan, X. Lu and L.-W. Ye, Org. Lett., 2016, 18, 3254; (e) S. N. Karad and R.-S. Liu, Angew. Chem., Int. Ed., 2014, 53, 9072; (f) J. Zhang, Q. Zhang, B. Xia, J. Wu, X.-N. Wang, J. Chang, Org. Lett., 2016, 18, 3390.
    6. (a) S. M. Kim, I. S Byun and Y. H. Kim, Angew. Chem., Int. Ed. 2000, 39, 728; (b) J.-H. Chen, U. Venkatesham, L.-C. Lee, and K. Chen, Tetrahedron 2006, 62, 887; (c) S. W. Young, Y. H. Kim, J.-W. Hwang and Y. Do, Chem. Commun., 2001, 996; (e) M. Kosior, M. Asztemborska and J. Jurczak, Synthesis 2004, 1, 87; (f) L. Yang, D.-X. Wang, Z.-T. Huang and M.-X. Wang, J. Am. Chem. Soc., 2009, 131, 10390; (g) S. R. Ram, A. R. Devi and D. S. Iyengar, Chem. Lett. 2002, 718.
    7. (a) C. De Risi, G. P. Pollini and V. Zanirato, Chem. Rev. 2016, 116, 3241; (b) D. Kumar, S. R. Vemula and G. R. Cook, ACS Catal. 2016, 6, 4920-4945.
    8. (a) C. K. Wada, R. R. Frey, Z. Ji, M. L. Curtin, R. B. Garland, J. H. Holms, J. Li, L. J. Pease, J. Guo, K. B. Glaser, P. A. Marcotte, P. L. Richardson, S. S. Murphy, J. J. Bouska, P. Tapang, T. J. Magoc, D. H. Albert, S. K. Davidsen and M. R. Michaelides, Bioorg. Med. Chem. Lett., 2003, 13, 3331; (b) M. R. Angelastro, S. Mehdi, J. P. Burkhart, N. P. Peet and P. Bey, J. Med. Chem. 1990, 33, 11; (c) T. D. Ocain and D. H. Rich, J. Med. Chem. 1992, 35, 451.
    9. (a) C. Zhang and N. Jiao, J. Am. Chem. Soc. 2010, 132, 28; (b) C. Zhang, C, Z. J. Xu, L. J. Zhang and N. Jiao, Angew.Chem., Int. Ed. 2011, 50, 11088; (c) C. Zhang, X. L. Zong, L. G. Zhang and N. Jiao, Org. Lett. 2012, 14, 3280.
    10. (a) J. Zhang, Y. Wei, S. Lin, F. Liang and P. Liu, Org. Biomol. Chem. 2012, 10, 9237; (b) F.-T. Du and J.-X. Ji, Chem. Sci. 2012, 3, 460; (c) D. Li, M. Wang, J. Liu, Q. Zhao and L. Wang, Chem. Commun., 2013, 49, 3640.
    11. W.-P. Mai, H.-H. Wang, Z.-C. Li, J.-W. Yuan, Y.-M. Xiao, L.-R. Yang, P. Mao and L.-B. Qu, Chem. Commun., 2012, 48, 10117.
    12. (a) W. Wei, Y. Shao, H. Hu, F. Zhang, C. Zhang, Y. Xu and X. Wan, J. Org. Chem., 2012, 77, 7157; (b) X. Zhang, M. Wang, Y. Zhang and L. Wang, RSC Adv., 2013, 3, 1311; (c) Q. Zhao, T. Miao, X. Zhang, W. Zhou and L. Wang, Org. Biomol. Chem. 2013, 11, 1867.
    13. (a) E. Valeur and M. Bradley, Chem. Soc. Rev., 2009, 38, 6; I2-catalysed method, see: (b) X. Wu, Q. Gao, S. Liu and A. Wu, Org. Lett., 2014, 16, 2888.
    14. (a) Z. F. Al-Rashid, W. L. Johnson, R. P. Hsung, Y. Wei, P.-Y. Yao, R. Liu and K. Zhao, J. Org. Chem., 2008, 73, 8780; (b) C.-F. Xu, M. Xu, Y.-X. Jia and C.-Y. Li, Org. Lett., 2011, 13, 1556; metal-free, see: (c) X. Wu, Q. Gao, S. Liu, and A. Wu, Org. Lett., 2014, 16, 2888; (d)T. Chikugo, Y. Yauchi, M. Ide and T. Iwasawa, Tetrahedron 2014, 70, 3988; using DMDO as oxidant, see: (e) Z. F. Al-Rashid, R. P. Hsung, Org. Lett., 2008, 10, 661.
    15. Light-induced photoredox catalyst, see: (a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem.Rev., 2013, 113, 5322; (b) M. Reckenthäler, A.G. Griesbeck, Adv. Synth. Catal., 2013, 355, 2727; (c) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, 102; (d) P. Y. Tehshik, A. I. Michael, D. Juana, Nat. Chem., 2010, 2, 527.
    16. Copper-photoredox catalyst, see: (a) M. Pirtsch, S. Paria, T. Matsuno, H. Isobe, O. Reiser, Chem. Eur. J., 2012, 18, 7336; (b) S. Paria and O. Reiser, ChemCatChem., 2014, 6, 2477; (c) A. Baralle, L. Fensterbank, J.-P. Goddard, C. Ollivier, Chem. Eur. J., 2013, 19, 10809; (d) A. C. Hernandez-Perez, S. K. Collins, Angew. Chem. Int. Ed., 2013, 52, 12696; (e) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science., 2012, 338, 647.
    17. Our works see: (a) A. Sagadevan and K. C. Hwang, Adv. Synth. Catal., 2012, 354, 3421; (b) A. Sagadevan, A. Ragupathi, and K. C. Hwang, Photochem. Photobiol. Sci., 2013, 12, 2110; (c) A. Sagadevan, A. Ragupathi, C.–C. Lin, J. R. Hwu and K. C. Hwang, Green Chem., 2015, 17, 1113; (d) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (e) A. Sagadevan, P. C. Lyu, and K. C. Hwang, Green Chem., 2016, 18, 4526; (f) A. Ragupathi, A. Sagadevan, C.-C. Lin, J. R. Hwu, K. C. Hwang, Chem. Commun. 2016, 52, 11756; (g) A. Sagadevan, V. P. Charpe and K. C. Hwang, Catal. Sci. Technol. 2016, 6, 7688.
    18. R. Chinchilla and C. Najera, Chem. Soc. Rev., 2011, 40, 5084.
    19. M. Gholami, and R. R. Tykwinski, Chem. Rev., 2006, 106, 4997.
    20. (a) C. Schuster, K. K. Julich-Gruner, H. Schnitzler, R. Hesse, A. Jäger, A. W. Schmidt and H.-J. Knölker, J. Org. Chem., 2015, 80, 5666; (b) A. W. Schmidt, K. R. Reddy and H.-J. Knölker, Chem. Rev., 2012, 112, 3193.
    21. CCDC 1495656 (2c) & CCDC 1495655 (2d) contain the supplementary crystallographic data for this work.
    22. R. Turgis, I. Billault, S. Acherar, J. Augé and M.-C. Scherrmann, Green Chem., 2013, 15, 1016.
    23. (a) Z. Chen, W. Zeng, H. Jiang and L. Liu, Org. Lett., 2012, 14, 5385; (b) J. Li and L. Neuville, Org. Lett., 2013, 15, 1752; c) S.-U. Kim, Y. Liu, K. M. Nash, J. L. Zweier, A. Rockenbauer and F. A. Villamena, J. Am. Chem. Soc., 2010, 132, 17157.
    24. (a) C. Zhang and N. Jiao, Angew. Chem., Int. Ed., 2010, 49, 6174; (b) K. K. Toh, Y.-F. Wang, E. P. J. Ng and S. Chiba, J. Am. Chem. Soc., 2011, 133, 13942; (c) S. E. Allen, R. R. Walvoord, R. Padilla-Salinas and M. C. Kozlowski, Chem. Rev., 2013, 113, 6234.
    25. H. Wang, Y. Wang, D. Liang, L. Liu, J. Zhang and Q. Zhu, Angew. Chem., Int. Ed., 2011, 50, 5678.
    26. C. Zhang, Z. Xu, L. Zhang and N. Jiao, Angew. Chem., Int. Ed., 2011, 50, 11088.
    27. D. Vasu, H. H. Hung, S. Bhunia, S. A. Gawade, A. Das and R. S. Liu, Angew. Chem., Int. Ed., 2011, 50, 6911.
    28. J. Lee, Y. L. Zhong, R. A. Reamer and D. Askin, Org. Lett. 2003, 5, 4175.

    1. A. R. Tilekar, A. R. Jagdale , G. Kukreja , G. G. Shenoy and N. Sinha, Tetrahedron, http://dx.doi.org/10.1016/j.tetasy.2016.10.014.
    2. (a) F. Ullmann, Chem. Ber. 1903, 36, 2382; (b) I. Goldberg, Chem. Ber. 1906, 39, 1691; (c) M. Kosugi, M. Kameyama and T. Migita, Chem. Lett. 1983, 12, 927; (d) M. S. Driver and J. F. Hartwig, J. Am. Chem. Soc. 1996, 118, 7217; (e) D. Chan, Tetrahedron Lett. 1996, 37, 9013; (f) A. S. Guram and S. L. Buchwald, J. Am. Chem. Soc. 1994, 116, 7901.
    3. V. Khedkar, A. Tillack, and M. Beller, Org. Lett., 2003, 5, 4767.
    4. D. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27.
    5. (a) B. P. Fors, D. A. Watson, M. R. Biscoe and S. L. Buchwald, J. Am.Chem. Soc. 2008, 130, 13552; (b) J. F. Hartwig, Synlett, 1997, 329; (c) A. T. Brusoe and J. F. Hartwig, J. Am. Chem. Soc. 2015, 137, 8460.
    6. K. Shin, H. Kim, and S. Chang, Acc. Chem. Res. 2015, 48, 1040.
    7. (a) J. Zhu, Q. Wang and M. Wang, Multicomponent Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2015. (b) Estevez, V.;Villacampa, M.; Menendez, J. C. Chem. Soc. Rev. 2014, 43, 4633. (c) Rotstein, B. H.; Zaretsky, S.; Rai, V.; Yudin, A. K. Chem. Rev. 2014, 114, 8323. (d) Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem. 2014, 16, 2958. (e) van der Heijden, G.; Ruijter, E.; Orru, R. V. A. Synlett. 2013, 24, 666.
    8. (a) Theato, P. Multi-Component and Sequential Reactions in Polymer Synthesis; Springer International Publishing: Heidelberg, 2015; Vol. 269. (b) Kakuchi, R. Angew. Chem., Int. Ed. 2014, 53, 46; (c) Rudick, J. G. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3985; (d) Wang, S.; Fu, C.; Wei, Y.; Tao, L. Macromol. Chem. Phys. 2014, 215, 486.
    9. (a) L. Weber, Curr. Med. Chem., 2002, 9, 2085; (b) L. Weber, Drug Discovery Today, 2002, 7, 143; (c) Y. Huang, A. Yazbak and A. Domling, in Multicomponent Reactions in Green Techniques for Organic Synthesis and Medicinal Chemistry, ed. W. Zhang and B. W. Cue, John Wiley & Sons, Ltd, Chichester, UK, 2012, p. 499; (d) C. Kalinski, H. Lemoine, J. Schmidt, C. Burdack, J. Kolb, M. Umkehrer and G. Ross, Synthesis, 2008, 4007.
    10. (a) O. Kreye, T. Tóth, and M. A. R. Meier, J. Am. Chem. Soc. 2011, 133, 1790; (b) X. X. Deng, L. Li, Z. L. Li, A. Lv, F. S. Du and Z. C. Li, ACS Macro Lett. 2012, 1, 1300; (c) L. Li, A. Lv, X. X. Deng, F. S. Du and Z. C. Li, Chem. Commun. 2013, 49, 8549; (d) L. Li, A. Lv, X. X. Deng, F. S. Du and Z. C. Li, Macromolecules 2014, 47, 4660; (e) S. Wang, N. Zhang, X. Ge, Y. Wan, X. Li, L. Yan, Y. Xia and B. Song, Soft Matter, 2014, 10, 4833. (f) P. R. Andreana, C. C. Liu and S. L. Schreiber, Org. Lett., 2004, 6, 4231.
    11. (a)A. Sehlinger, P. K. Dannecker, O. Kreye, and M. A. R. Meier, Macromolecules, 2014, 47, 2774; (b) N. Gangloff, D. Nahm, L. Döring, D. Kuckling, and R. J. Luxenhofer, Polym. Sci., Part A: Polym. Chem. 2015, 53, 1680; (c) B. Yang, Y. Zhao, Y. Wei, C. Fu, and L. Tao, Polym. Chem. 2015, 6, 8233; (d) I. Ugi, R. Meyr, U. Fetzer and C. Steinbrückner, Angew. Chem. 1959, 71, 386; (e) A. Domling and I. Ugi, Angew. Chem. Int. Ed. 2000, 39, 3168.
    12. (a) I. H. Lee, H. Kim and T. L. Choi, J. Am. Chem. Soc. 2013, 135, 3760; (b) H. Kim, and T. L. Choi, ACS Macro Lett. 2014, 3, 791.
    13. (a) C. Y. K. Chan, N. W .Tseng. J. W. Y Lam, J. Liu, R. T. K. Kwok and B. Z. Tang, Macromolecules 2013, 46, 3246; (b) Y. Liu, M. Gao, J. W. Y. Lam, R. Hu and B. Z. Tang, Macromolecules 2014, 47, 4908.
    14. (a) N. Miyaki, I. Tomita, and T. Endo, Macromolecules 1996, 29, 6685; (d) Y. Zhao, Y. Yu, Y. Zhang, X. Wang, B. Yang, Y. Zhang, Q. Zhang, C. Fu, Y. Wei and L. Tao, Polym. Chem. 2015, 6, 4940.
    15. (a) R. Kakuchi and P. Theato, ACS Macro Lett. 2013, 2, 419; (b) R. Kakuchi, and P. Theato, ACS Macro Lett. 2014, 3, 329; (c) P. R. Bachler, M. D. Schulz, C. A. Sparks, K. B. Wagener and B. S. Sumerlin, Macromol. Rapid Commun. 2015, 36, 828.
    16. (a) T. A. Skotheim and J. R. Reynolds, Handbook of Conducting Polymers, 3rd ed.; CRC Press LCC: Boca Raton, 2007; (b) Facchetti, A. Chem. Mater. 2011, 23, 733; (c) Y. J. Cheng, S. H. Yang and C. S. Hsu, Chem. Rev. 2009, 109, 5868; (d) L. Dou, Y. Liu, Z. Hong, G. Li and Y. Yang, Chem. Rev. 2015, 115, 12633; (e) D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev. 2000, 100, 2537.
    17. A. L. Strecker, Liebigs Ann. Chem. 1850, 75, 27.
    18. A. Hantzsch, Justus Liebegs Ann. Chem. 1882, 215, 1.
    19. A. Hantzsch, Ber. Dtsch. Chem. Ges. 1890, 23, 1474.
    20. O. Kappe, Acc. Chem. Res. 2000, 33, 879.
    21. S. F. Martin, Acc. Chem. Res. 2002, 35, 895.
    22. N. A. Petasis and I. Akritopoulou, Tetrahedron Lett. 1993, 34, 583.
    23. R. K. Jr, Boeckman, K. F. Bigasiewicz, D. J. Tusch and J. R. Miller, J.Org.Chem, 2015, 80, 4030.
    24. For photoredox catalysis (Ru, -Ir); (a) C. K. Prier, D. A Rankic and D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322; for copper-photoredox catalysis; (b) S. Paria and O. Reiser, Chem. Cat. Chem., 2014, 6, 2477; (c) S. E. Creutz, K. J. Lotito, G. C. Fu and J. C. Peters, Science., 2012, 338, 647; (d) D. T. Ziegler, J. Choi, J. M. Muñoz-Molina, A. Bissember, J. C. Peters and G. C. Fu, J. Am. Chem. Soc., 2013, 135, 13107; (e) L. Gu, C. Jin, J. Liu, H. Zhang, M. Yuan and G. Li, Green Chem., 2016, 18, 1201.
    25. (a) A. Sagadevan and K. C. Hwang, Adv. Synth. Catal., 2012, 354, 3421;(b) A. Sagadevan, A. Ragupathi and K. C. Hwang, Photochem. Photobiol. Sci., 2013, 12, 2110; (c) A. Sagadevan, A. Ragupathi, C.-C. Lin, J. R. Hwu and K. C. Hwang, Green Chem., 2015, 17, 1113; (d) A. Sagadevan, A. Ragupathi and K. C. Hwang, Angew. Chem., Int. Ed., 2015, 54, 13896; (e) A. Sagadevan, P. C. Lyu and K. C. Hwang, Green Chem., 2016, 18, 4526. (f) A. Sagadevan, V. P. Charpe and K. C. Hwang, Catal. Sci. Technol. 2016, 6, 7688.
    26. (a) C. Sambiagio, S. P. Marsden, A. J. Blacker and P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525; (b) F. Monnier and M.Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954.
    27. H. Musso, Angew. Chem. Int. Ed. Engl. 1963, 2, 723.
    28. A. Sagadevan, V. P. Charpe, A. Ragupathi and K. C. Hwang, J. Am. Chem. Soc., 2017, 139, 2896.

    QR CODE