簡易檢索 / 詳目顯示

研究生: 謝宜珊
Hsieh, Yi-Shan
論文名稱: PRSS23必需透過TCF12調控Snail相關的內皮到間葉細胞型態之轉化
PRSS23 is essential for Snail-dependent endothelial to mesenchymal transition via TCF12
指導教授: 莊永仁
Chuang, Yung-Jen
口試委員: 王學孝
張壯榮
莊永仁
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 41
中文關鍵詞: 內皮到間葉細胞型態之轉化人類動脈內皮層細胞絲氨酸蛋白酶23轉錄因子Snail乙型轉化生長因子
外文關鍵詞: Endothelial to mesenchymal transition, Human aortic endothelial cell, PRSS23, Snail transcription factor, Transforming growth factor β
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 內皮細胞自原型態轉化到間葉細胞型態的改變,是心臟瓣膜發育過程中重要的步驟。此一細胞型態轉化的過程,與表皮到間葉細胞型態轉化的過程非常類似,其調控機制也極為相近。先前的研究指出,內皮到間葉細胞型態的轉化可以由乙型轉化生長因子所引發,再經由下游轉錄因子Snail調控許多與轉化相關基因的表現。然而此調控機制複雜多變,仍有許多細節尚待釐清。
    PRSS23是我們實驗室早先於內皮細胞中發現並已研究多年的新穎絲氨酸蛋白酶。在先前的斑馬魚研究上顯示,我們利用反義寡核苷酸抑制PRSS23的蛋白質表現後,會導致斑馬魚心臟瓣膜發育異常。我們進一步利用組織免疫螢光切片染色發現,在PRSS23表現受抑制時,位於瓣膜處的內皮細胞並未進行內皮到間葉細胞型態的轉化。於是為了更進一步研究PRSS23在內皮到間葉細胞型態轉化中扮演的角色,本篇研究主要使用短夾干擾型核醣核酸在人類動脈內皮層細胞上抑制PRSS23的表現,進行細胞層次的實驗。
    我們的結果指出,抑制PRSS23的表現會使得人類動脈內皮層細胞不進行乙型轉化生長因子所誘發的細胞型態轉化。進一步研究指出,PRSS23不會影響轉化生長因子路徑中SMAD的磷酸化,而是進入胞核影響SMAD下游轉錄因子Snail的轉錄活性。另外根據Snail啟動子的序列分析,我們在各物種間較為保留的片段中,找到E-box的序列 (CANNTG)。在前人研究中,已知TCF12轉錄因子會與E-box結合,進而調控與心臟發育相關下游基因的表現。利用免疫共沈澱法,我們確定了PRSS23會與TCF12結合。這個分析指出,PRSS23和TCF12的複合物可能會藉由調控Snail的啟動子,影響內皮到間葉細胞型態的轉化。本篇研究闡述PRSS23是Snail相關的內皮到間葉細胞型態轉化過程中,不可或缺的因子,並推測其調控心臟瓣膜發育的反應機制。


    Endothelial to Mesenchymal Transition (EnMT) is an important process during cardiac valve formation. It is believed the general mechanism of EnMT is similar to that of epithelial to mesenchymal transition (EMT). Previous studies indicate that EnMT can be induced by transforming growth factor β (TGF-β). TGF-β first triggers the downstream signal transduction, such as SMAD pathway, and then activates transcription factor like Snail. The activated Snail represses the expression of endothelial markers while promotes the expression of mesenchymal markers, to drive the EnMT process. Nevertheless, the EnMT has a complex molecular mechanism with many details still remains unclear. PRSS23 is a novel endothelial serine protease identified in our previous studies. In previous in vivo assays, we have used morpholino to knockdown PRSS23 expression in zebrafish embryo, and found the loss of PRSS23 could cause cardiac valve malformation in developing heart. Immunohistochemcal data further showed the cardiac endothelial cells fail to initiate EnMT during valve formation. To characterize the role of PRSS23 in EnMT, human aortic endothelial cells (HAECs) and shRNA knockdown were used as key experimental systems in this study. The results indicated that knockdown of PRSS23 inhibited TGF-β2-induced EnMT in HAECs. Further studies revealed knockdown of PRSS23 did not affect the phosphorylation of SMAD, but repressed the transcription of Snail in TGF-β2-treated HAECs. By co-immunoprecipitation (co-IP), we also validated the interaction of PRSS23 and TCF12. TCF12 is a transcription factor involved in heart development, and is known to bind E-box (CANNTG) in promoter. Interestingly, we found E-box is conserved in the Snail promoter of various vertebrates. Therefore, PRSS23/TCF12 complex may bind the promoter of Snail to regulate EnMT. Our results suggest that PRSS23 is essential for Snail-dependent EnMT, and provide clue to reveal the possible mechanism of PRSS23 in EnMT.

    List of Contents 中文摘要 I Abstract II List of Supplemental Figures IV List of Tables IV Abbreviations V 1.Introduction 1 1.1PRSS23 and endothelial to mesenchymal transition 1 1.2TCF12 3 1.3The objective in this study 4 2.Materials and Methods 5 2.1Cell culture of HAEC, HEK293T and TLA-HEK293TTM 5 2.2Lentivirus preparation and infection 5 2.3TGF-β2 induced EnMT assay 6 2.4RNA preparation and cDNA synthesis 6 2.5Real-time quantitative polymerase chain reaction (RT-qPCR) 7 2.6Western blot 7 2.7Immunofluorescent staining 8 2.8Construction of protein expression plasmids 8 2.9HEK293T cells transfection 9 2.10Co-immunoprecipitation (Co-IP) 9 2.11Promoter analysis 10 3.Results 11 3.1PRSS23 expression was knockdown by lentiviral shRNA approach 11 3.2Knockdown of PRSS23 inhibited TGF-β2-induced EnMT in HAECs. 11 3.3PRSS23 knockdown repressed Snail transcription. 13 3.4Expression and localization of PRSS23 is independent of TGF-β2 signaling. 14 3.5PRSS23 co-localized and interacted with TCF12 in the HAEC nucleus. 14 3.6Snail promoter analysis indicated possible regulation role of PRSS23/TCF12 complex on EnMT. 16 4.Discussion 18 4.1PRSS23 and TGF-β-induced EnMT 18 4.2PRSS23 and SMAD-independent pathway 19 4.3Nuclear PRSS23 19 4.4PRSS23 and cell proliferation 20 4.5The upstream regulator of PRSS23/TCF12 20 4.6Comparison the mechanism of EMT and EMT 21 4.7Future study 21 5.References 22 List of Figures Figure 1. PRSS23 expression were reduced at both mRNA and protein level by lentiviral shRNA system. 26 Figure 2. Knockdown of PRSS23 caused HAECs fail to undergo TGF-β2-induced EnMT. 27 Figure 3. Knockdown of PRSS23 did not affect the Smad2 phosphorylation in TGF-β2 treated HAECs. 28 Figure 4. PRSS23 knockdown represses Snail transcription after TGF-β2 treatment. 29 Figure 5. TGF-β2 signaling did not change the expression level and distribution of PRSS23 in HAECs. 30 Figure 6. PRSS23 co-localized with TCF12 at nucleus in HAECs. 31 Figure 7. Treating TGF-β2 in HAECs did not affect the expression pattern of PRSS23 and TCF12 in HAECs. 32 Figure 8. PRSS23 interacts with TCF12. 33 Figure 9. TCF12 DNA binding site, E-box, is found in the conserved region of Snail promoter in various vertebrates. 34 Figure 10. Model of PRSS23 regulated Snail-dependent EnMT via TCF12. 35 List of Supplemental Figures Figure S1. zPRSS23 knockdown resulted in failed to initiate EnMT during valve formation at 72 hours post fertilization (hpf). 36 Figure S2. Knockdown of PRSS23 inhibited TGF-β1-induced EnMT in HAECs. 37 Figure S3. Knockdown of PRSS23 inhibited Snail transcription during TGF-β1-induced EnMT in HAECs. 38 List of Tables Table 1. RT-qPCR primers list 39 Table 2. Antibodies list 40 Table 3. Comparison the mechanism of EMT and EMT 41

    1.PCT (2008) PRSS23 AS A BIOMARKER, THERAPEUTIC AND DIAGNOSTIC TARGET
    2.Cerutti C, Kurdi M, Bricca G, Hodroj W, Paultre C, Randon J, & Gustin MP (2006) Transcriptional alterations in the left ventricle of three hypertensive rat models. Physiol Genomics 27(3):295-308.
    3.Markwald RR, Fitzharris TP, & Manasek FJ (1977) Structural development of endocardial cushions. Am J Anat 148(1):85-119.
    4.Potts JD, Dagle JM, Walder JA, Weeks DL, & Runyan RB (1991) Epithelial-mesenchymal transformation of embryonic cardiac endothelial cells is inhibited by a modified antisense oligodeoxynucleotide to transforming growth factor beta 3. Proc Natl Acad Sci U S A 88(4):1516-1520.
    5.Wagner M & Siddiqui MA (2007) Signal transduction in early heart development (II): ventricular chamber specification, trabeculation, and heart valve formation. Exp Biol Med (Maywood) 232(7):866-880.
    6.Stainier DY (2001) Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2(1):39-48.
    7.Wagner M & Siddiqui MA (2007) Signal transduction in early heart development (I): cardiogenic induction and heart tube formation. Exp Biol Med (Maywood) 232(7):852-865.
    8.Liebner S, Cattelino A, Gallini R, Rudini N, Iurlaro M, Piccolo S, & Dejana E (2004) Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J Cell Biol 166(3):359-367.
    9.Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, & Kalluri R (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952-961.
    10.Zeisberg EM, Potenta S, Xie L, Zeisberg M, & Kalluri R (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123-10128.
    11.Armstrong EJ & Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95(5):459-470.
    12.Huber MA, Kraut N, & Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17(5):548-558.
    13.Radisky DC (2005) Epithelial-mesenchymal transition. J Cell Sci 118(Pt 19):4325-4326.
    14.Arciniegas E, Sutton AB, Allen TD, & Schor AM (1992) Transforming growth factor beta 1 promotes the differentiation of endothelial cells into smooth muscle-like cells in vitro. J Cell Sci 103 ( Pt 2):521-529.
    15.Shi Y & Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685-700.
    16.Nakajima Y, Yamagishi T, Hokari S, & Nakamura H (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor (TGF)-beta and bone morphogenetic protein (BMP). Anat Rec 258(2):119-127.
    17.Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, & Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development 124(13):2659-2670.
    18.Bartram U, Molin DG, Wisse LJ, Mohamad A, Sanford LP, Doetschman T, Speer CP, Poelmann RE, & Gittenberger-de Groot AC (2001) Double-outlet right ventricle and overriding tricuspid valve reflect disturbances of looping, myocardialization, endocardial cushion differentiation, and apoptosis in TGF-beta(2)-knockout mice. Circulation 103(22):2745-2752.
    19.Azhar M, Runyan RB, Gard C, Sanford LP, Miller ML, Andringa A, Pawlowski S, Rajan S, & Doetschman T (2009) Ligand-specific function of transforming growth factor beta in epithelial-mesenchymal transition in heart development. Dev Dyn 238(2):431-442.
    20.Peinado H, Olmeda D, & Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7(6):415-428.
    21.Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, & Nieto MA (2000) The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2(2):76-83.
    22.Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, & Garcia De Herreros A (2000) The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2(2):84-89.
    23.Kokudo T, Suzuki Y, Yoshimatsu Y, Yamazaki T, Watabe T, & Miyazono K (2008) Snail is required for TGFbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci 121(Pt 20):3317-3324.
    24.Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, & de la Pompa JL (2004) Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev 18(1):99-115.
    25.Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, & Wanker EE (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957-968.
    26.Rivera-Feliciano J, Lee KH, Kong SW, Rajagopal S, Ma Q, Springer Z, Izumo S, Tabin CJ, & Pu WT (2006) Development of heart valves requires Gata4 expression in endothelial-derived cells. Development 133(18):3607-3618.
    27.Carney SA, Chen J, Burns CG, Xiong KM, Peterson RE, & Heideman W (2006) Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 70(2):549-561.
    28.Zhang Y, Babin J, Feldhaus AL, Singh H, Sharp PA, & Bina M (1991) HTF4: a new human helix-loop-helix protein. Nucleic Acids Res 19(16):4555.
    29.Ellenberger T, Fass D, Arnaud M, & Harrison SC (1994) Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev 8(8):970-980.
    30.Hu JS, Olson EN, & Kingston RE (1992) HEB, a helix-loop-helix protein related to E2A and ITF2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol 12(3):1031-1042.
    31.Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, Akalin A, Schmeier S, Kanamori-Katayama M, Bertin N, Carninci P, Daub CO, Forrest AR, Gough J, Grimmond S, Han JH, Hashimoto T, Hide W, Hofmann O, Kamburov A, Kaur M, Kawaji H, Kubosaki A, Lassmann T, van Nimwegen E, MacPherson CR, Ogawa C, Radovanovic A, Schwartz A, Teasdale RD, Tegner J, Lenhard B, Teichmann SA, Arakawa T, Ninomiya N, Murakami K, Tagami M, Fukuda S, Imamura K, Kai C, Ishihara R, Kitazume Y, Kawai J, Hume DA, Ideker T, & Hayashizaki Y (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140(5):744-752.
    32.Barnes RM, Firulli BA, Conway SJ, Vincentz JW, & Firulli AB (2010) Analysis of the Hand1 cell lineage reveals novel contributions to cardiovascular, neural crest, extra-embryonic, and lateral mesoderm derivatives. Dev Dyn 239(11):3086-3097.
    33.Zhao Q, Beck AJ, Vitale JM, Schneider JS, Gao S, Chang C, Elson G, Leibovich SJ, Park JY, Tian B, Nam HS, & Fraidenraich D (2011) Developmental ablation of Id1 and Id3 genes in the vasculature leads to postnatal cardiac phenotypes. Dev Biol 349(1):53-64.
    34.Livak KJ & Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-408.
    35.Kitao A, Sato Y, Sawada-Kitamura S, Harada K, Sasaki M, Morikawa H, Shiomi S, Honda M, Matsui O, & Nakanuma Y (2009) Endothelial to mesenchymal transition via transforming growth factor-beta1/Smad activation is associated with portal venous stenosis in idiopathic portal hypertension. Am J Pathol 175(2):616-626.
    36.Diez M, Musri MM, Ferrer E, Barbera JA, & Peinado VI (2010) Endothelial progenitor cells undergo an endothelial-to-mesenchymal transition-like process mediated by TGFbetaRI. Cardiovasc Res 88(3):502-511.
    37.Medici D, Potenta S, & Kalluri R (2011) Transforming Growth Factor-beta2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signaling. Biochem J.
    38.Medici D, Potenta S, & Kalluri R (2011) Transforming growth factor-beta2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J 437(3):515-520.
    39.Ghosh AK, Bradham WS, Gleaves LA, De Taeye B, Murphy SB, Covington JW, & Vaughan DE (2010) Genetic deficiency of plasminogen activator inhibitor-1 promotes cardiac fibrosis in aged mice: involvement of constitutive transforming growth factor-beta signaling and endothelial-to-mesenchymal transition. Circulation 122(12):1200-1209.
    40.Kim S, Kang HY, Nam EH, Choi MS, Zhao XF, Hong CS, Lee JW, Lee JH, & Park YK (2010) TMPRSS4 induces invasion and epithelial-mesenchymal transition through upregulation of integrin alpha5 and its signaling pathways. Carcinogenesis 31(4):597-606.
    41.Dhasarathy A, Kajita M, & Wade PA (2007) The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Mol Endocrinol 21(12):2907-2918.
    42.Park SH, Cheung LW, Wong AS, & Leung PC (2008) Estrogen regulates Snail and Slug in the down-regulation of E-cadherin and induces metastatic potential of ovarian cancer cells through estrogen receptor alpha. Mol Endocrinol 22(9):2085-2098.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE