研究生: |
李冠禛 LEE, KUAN-CHEN |
---|---|
論文名稱: |
利用動態模態分解分析擺動平板之尾流 Analysis of Vortical Wake behind a Flapping Plate using Dynamic Mode Decomposition |
指導教授: |
張敬
Chang, Ching |
口試委員: |
林昭安
Lin, Chao-An 廖川傑 Liao, Chuan-Chieh |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 擺動平板 、渦流 、尾流 、動態模態 、二維模擬 |
外文關鍵詞: | flapping plate, vortex, wake, DMD, 2D simulation |
相關次數: | 點閱:36 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將先進行文獻回顧來簡介渦流尾流模擬的概況,接著定義幾種不同的渦流模式,並且在往後的章節介紹相關會應用到的方程式與數值方法。首先會從Lentink等人的研究出發,參照他們的實驗設定進行二維的模擬,並分別設有flapping (heaving與pitching組合,無相位差)、flapping-90 (heaving與pitching組合,有90°相位差)、heaving (垂直上下擺動)與pitching (前後轉動)等4種不同運動模式並搭配多種不同擺動頻率來進行二維平板的尾流模擬。再藉由觀察模擬結果的流場尾流之渦流模式及其阻力值與升力值來做比較,並且討論其中幾種具代表性的流場之渦流模式。從我們的模擬結果可以看出各種不同的運動模式配上不同的無因次化波長所造成的渦流模式皆不相同: 波長越大造成的P跟S越多,波長越小造成的P跟S越少。接著再利用Dynamic mode decomposition (DMD)與來分析流場結構,其結果將呈現DMD模態皆是對稱、反對稱或不對稱的模式,尤其疊加運動(flapping與flapping-90)會比單純運動(heaving 與 pitching)更容易發生不對稱的情況。最後再對流場進行快速傅立葉轉換(Fast Fourier Transform, FFT)來觀察其特徵值與頻率的關聯性。
This study will begin with a literature review to provide an overview of the simulation of vortex wakes. Subsequently, various vortex patterns will be defined, and relevant equations and numerical methods to be used in the following chapters will be introduced. The initial simulations will be based on Lentink et al.'s research and following their experimental settings. Four different motion patterns will be considered for two-dimensional wake simulations of a flat plate: flapping (combination of heaving and pitching without phase difference), flapping-90 (combination of heaving and pitching with a 90° phase difference), heaving (vertical up and down motion), and pitching (forward and backward rotation). These motion patterns will be combined with different oscillation frequencies to simulate the wake. By observing the simulated wake patterns, drag, and lift values, a comparison will be made, and several representative wake patterns will be discussed. Our simulation results demonstrate that the vortex patterns vary for different motion patterns and non-dimensional wavelength: larger wavelength results in more P and S vortices, while smaller wavelengths lead to fewer P and S vortices. Next, the Dynamic Mode Decomposition (DMD) will be utilized to analyze the flow field structures. The DMD analysis will reveal symmetric, anti-symmetric, or asymmetric modes, with a tendency for more occurrences of asymmetric situations when superimposing motions (flapping and flapping-90) compared to single motions (heaving and pitching). Finally, the flow field will undergo Fast Fourier Transform (FFT) analysis to examine the correlation between eigenvalues and frequencies.
[1] Kai Zhou, Junkao Liu and Weishan Chen (2015). Numerical Studies on Hydrodynamics of Flapping Foils. IEEE International Conference on Information and Automation.
[2] C.H.K Williamson and A. Roshko (1988). Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 2, 355-381
[3] Ramiro Godoy-Diana, Jean-Luc Aider, and José Eduardo Wesfreid (2008). Transitions in the wake of a flapping foil. Physical Review E, 77, 016308
[4] N. S. Lagopoulos, G. D. Weymouth, and B. Ganapathisubramani (2020). Deflected wake interaction of tandem flapping foils. Journal of Fluid Mechanics 903, A9
[5] Teis Schnipper, Anders Andersen and Tomas Bohr (2009). Vortex wakes of a flapping foil. Journal of Fluid Mechanics, 633, 411–423
[6] David Lentink, Florian T. Muijres, Frits J. Donker-Duyvis and Johan L. van Leeuwen (2008). Vortex-wake interactions of a flapping foil that models animal swimming and flight. The Journal of Experimental Biology, 211, 267-273
[7] Christopher J. Greenshields, Henry G. Weller (2022). Notes on Computational Fluid Dynamics: General Principles. CFD Direct Limited
[8] 黃先北, 郭嬙 (2021). OpenFOAM從入門到精通. 中國水利水電出版社
[9]https://upload.wikimedia.org/wikipedia/commons/thumb/5/55/Phase_shift.svg/1024px-Phase_shift.svg.png
[10] Peter J. Schmid (2010). Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics ,656, 5–28
[11] Nathan J. Kutz, Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor (2016). Dynamic mode decomposition: data-driven modeling of complex systems. Society for industrial and applied mathematics Philadelphia (Pa.)
[12] Huan Ping, Hongbo Zhu, Kai Zhang, Dai Zhou, Yan Bao, Yuwang Xu, Zhaolong Han (2021). Dynamic mode decomposition based analysis of flow past a transversely oscillating cylinder. Physics of Fluids, 33, 033604
[13] David Lentink, GertJan F. Van Heijst, Florian T. Muijres and Johan L. Van Leeuwen (2010). Vortex interactions with flapping wings and fins can be unpredictable. Biology Letters, 6, 394–397
[14] https://www.youtube.com/watch?v=0mbmIOf3hRk&ab_channel=WolfDynamics
[15] By Iit.asheesh - in msword made it by mePreviously published: no, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=113380041
[16] https://en.wikipedia.org/wiki/Dynamic_mode_decomposition
[17] M. A. Ashraf, J. Young, and J. C. S. Lai (2009). Effect of Airfoil Thickness, Camber and Reynolds Number on Plunging Airfoil Propulsion. 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5 - 8 January 2009, Orlando, Florida.
[18] Florian T. Muijres, David Lentink (2007). Wake visualization of a heaving and pitching foil in a soap film. Experiments in Fluids, 43, 665–673
[19] M. A. Rutgers, X. L. Wu and W. B. Daniel (2001). Conducting fluid dynamics experiments with vertically falling soap films. Review of Scientific Instruments, 72, 3025–3037
[20] Xia Wu, Xiantao Zhang, Xinliang Tian, Xin Li, Wenyue Lu (2019). A review on fluid dynamics of flapping foils. Ocean Engineering, 195, 106712
[21] https://openfoamwiki.net/index.php/OverPimpleDyMFoam
[22] https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-pressure-velocity-intro.html