簡易檢索 / 詳目顯示

研究生: 鄒沛剛
Tsou, Pei-Kang
論文名稱: 葡萄糖衍生物之金屬催化碳氧鍵活化之計算研究
A Computational Study of the Metal Catalyzed C–O bond Activation in Glucose Derivatives for the Synthesis of Natural Products
指導教授: 游靜惠
Yu, Chin-Hui
口試委員: 尤禎祥
Yu, Jen-Shiang
楊小青
Yang, Hsiao-Ching
蔡易州
Tsai, Yi-Chou
周佳駿
Chou, Chia-Chun
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 119
中文關鍵詞: 計算化學密度泛函理論威悌重排尼古拉斯反應反應機制多參考態計算溶劑效應螯合效應
外文關鍵詞: multi-reference, chelation effect
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用密度泛函理論與第一原理方法研究葡萄糖衍生物之碳氧鍵活化的相關反應機制。在二氫吡喃的威悌重排反應中發現 2,3-同步反應、逐步反應、與新發現之逆逐步反應三種主要的機制,環上一號與三號位的取代基效應造成反應經由不同的路徑得到 1,2-或 2,3-重排產物。威悌重排的反應機制牽連取代基中氧原子與鋰離子的配位,以及溶劑效應,因此我們對烯丙基醚,與炔丙基烯丙基醚進行進一步的計算,透過多參考態方法與 Boys 定域化軌域分析,我們可以分辨出均勻, 與非均勻碳氧斷裂形式,當鋰離子與轉移的烯丙基基團的 γ 碳配位會利非均勻斷裂,而鋰離子與炔丙基基團的 γ 碳配位形成累積二烯烴形式則利於均勻斷裂。鋰離子與溶劑四氫呋喃配位會使反應偏向同步 2,3-重排,而與周圍取代基上氧原子配位則可能使反應走向逐步反應,且利於產生 1,2-重排產物。
    此外,在磯部稔教授的藥物合成中嘗試透過雙側反應活性中心之葡萄糖衍生物的尼古拉斯反應來產生差向立體異構化,然而差向立體異構物卻無法在實驗中得到,我們計算尼古拉斯異構化機制中發現:其關鍵反應步驟並非鈷催化的碳氧斷鍵,而決定於立體化學改變過程。此外,計算結果發現鈷與氧位於反應中心同一側的斷鍵或成鍵過程,且可能在異構化中扮演重要角色。葡萄糖衍生物環上的剛性取代基可能會延緩其異構化速度,而使反應偏向另一側活性中心進行尼古拉斯取代反
    應。


    The reaction mechanisms of Wittig rearrangement and Nicholas reaction for glucose derivatives are studied using density functional theory (DFT) and ab initio methods. In cooperation research with Prof. Isobe, [2,3]-Wittig rearrangement of sugar-derived dihydropyran (dhp) allyl propargyl ether was applied in the synthesis, but the unexpected [1,2]-Wittig rearrangement were observed in experiment. UM06-2X/6-31+G(d) calculations were done to explore the regiocontrol in the Wittig rearrangement. The computational results show that different rearrangement products formed through different mechanisms depending on the R1 and R3 substituents of the dhp reactant. With an R1=O-iPr and R3=TMS-ethynyl group, an inversed stepwise [2,3]-process (first C3−C2 bond formation, then C1−O bond cleavage) is preferred. Without the R3 substituent, the regular stepwise pathway (first C1−O bond cleavage, then C3−C2' bond formation) is favored and the major [1,2]-product is formed. Without any R1 and R3 substituents, a concerted [2,3]-process is favored.
    A solvent effect on the Wittig rearrangement was observed in the experiments, which is believed to originate from the coordination between Li + ion and tetrahydrofuran (THF). An extended study of the solvent and chelation effects was done using the CASSCF and DFT methods. Both the homolytic and heterolytic stepwise mechanism were examined. For the rearrangement of diallyl ether, the singlet diradical character is found in the transition state of C1−O bond cleavage, but a stable ionic pair intermediate should be formed. For the rearrangement of allyl propargyl ether, the bond cleavage mechanisms are controlled by the coordination of Li+ ion. The homolytic mechanism is observed with the coordination to the propargyl C4' atom, while that of the heterolytic mechanism is to the allyl C3 atom. The reaction modes are controlled by the coordination of Li+ ion to the solvent and substituent heteroatoms. The [2,3]-Wittig rearrangement is favored when the Li+ ion is coordinated to solvents; the [1,2]- is favored while the Li+ ion chelated by the ether oxygen and substituent methoxy oxygen on C4. The Nicholas epimerization reaction for the aziridinyl (azi) glycoside with two reactive sides was applied in the synthesis of Zanamivir by Prof. Isobe. However, the expected β-epimer product was not obtained in experiment. DFT calculations are used to rationalize the difference in reactivity for the Nicholas epimerization and substitution with azi and dhp glycosides. Six possible pathways are explored, and the rate determining steps in each path control the stereochemistry of C1. The results indicate the substituents, which can increase the rigidity of the backbone, slow down the epimerization reactions, so that the Nicholas substitution dominates.

    摘要. . . . . .i Abstract. . . . . .ii Contents. . . . . .iv List of Tables. . . . . .vii List of Schemes. . . . . .viii List of Figures. . . . . .x List of Abbreviations. . . . . .xiii Chapter 1 Overview. . . . . .1 Chapter 2 Computational Methods and Theory. . . . . .3 2.1 Density Functional Theory. . . . . .3 2.1.1 Hohenberg-Kohn theory. . . . . .3 2.1.2 The M06 suite of functionals. . . . . .8 2.2 Many-Body Perturbation Theory. . . . . .12 2.3 Configuration Interaction and Multi-Configurational SCF . . . . . .15 2.4 Quadratic Configuration Interaction Theory. . . . . .17 2.5 Foster-Boys Localization Method. . . . . .19 Chapter 3 Stereochemical Course of Wittig Rearrangements of Dihydropyran Allyl Propargyl Ethers. . . . . .21 3.1 Introduction. . . . . .21 3.2 Computational Details. . . . . .25 3.3 Results And Discussion. . . . . .28 3.3.1 Wittig rearrangement of compound 21. . . . . .28 3.3.2 Wittig rearrangement of compound 17. . . . . .31 3.3.3 Wittig rearrangement of compound 12. . . . . .33 3.4 Conclusion . . . . . . 35 Chapter 4 Computational Study on the Solvent and Chelation effect of Wittig Rearrangements of Allyl Ethers. . . . . .38 4.1 Introduction. . . . . .38 4.2 Computational Methods. . . . . .42 4.3 Result and discussion. . . . . .45 4.3.1 The electronic structure calculations on the C1−O bond cleavage in the gas phase. . . . . .45 4.3.2 The rearrangement of ally propargyl ether in the solvent. . . . . .49 4.3.3 The rearrangement of 4-methoxy-but-2-enyl propargyl ether. . . . . .56 4.4 Conclusion. . . . . .62 Chapter 5 Substituent Effects in the Nicholas Epimerization of Glycosides. . . . . .64 5.1 Introduction. . . . . .64 5.2 Computational models and set ups. . . . . .68 5.3 Result and discussion. . . . . .70 5.3.1 Cobalt-assisted C−O Bond Cleavage. . . . . .70 5.3.2 Epimerization mechanism. . . . . .74 5.3.3 Substituent effect: the reactivity of 6 and 11. . . . . .78 5.4 Conclusion. . . . . .85 Chapter 6 Summary. . . . . .87 Chapter A Appendix. . . . . .100 A.1 Wittig rearrangements of dihydropyran allyl propargyl ethers. . . . . .100 A.2 Substitution effect on the Wittig rearrangements of diallyl ether and allyl propargyl ether. . . . . .105 A.3 The electronic structures of diallyl ether AE. . . . . .109 A.4 The electronic structures of PE and ME. . . . . .112 A.5 The energy diagrams and TS structures for the Nicholas epimerization and substitutions. . . . . .117

    [1] Levine, I. N. Quantum Chemistry, 6th ed.; pearson: Brooklyn College, City University of New York, 2007.
    [2] Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215–241.
    [3] Isobe, M.; Chang, W.-C.; Tsou, P.-K.; Ploysuk, C.; Yu, C.-H. J. Org. Chem. 2015, 80, 6222–6237.
    [4] Thomas, L. H. Math. Proc. Cambridge Philos. Soc. 1927, 23, 542.
    [5] Dirac, P. A. M. Math. Proc. Cambridge Philos. Soc. 1930, 26, 376.
    [6] Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864–B871.
    [7] Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133–A1138.
    [8] Perdew, J. P.; Ruzsinszky, A.; Tao, J.; Staroverov, V. N.; Scuseria, G. E.;Csonka, G. I. J. Chem. Phys. 2005, 123, 062201.
    [9] Car, R. Nat. Chem. 2016, 8, 820–821.
    [10] Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200–1211.
    [11] Ren, X.; Rinke, P.; Joas, C.; Scheffler, M. J. Mater. Sci. 2012, 47, 7447–7471.
    [12] Slater, J. C.; Phillips, J. C. Phys. Today 1974, 27, 49–50.
    [13] Becke, A. D. Phys. Rev. A 1988, 38, 3098–3100.
    [14] Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671–6687.
    [15] Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868.
    [16] Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. Phys. Rev. Lett. 2003, 91, 146401.
    [17] Perdew, J. P. Phys. Rev. B 1986, 33, 8822–8824.
    [18] Perdew, J. P.; Wang, Y. Phys. Rev. B 1992, 45, 13244–13249.
    [19] Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.
    [20] Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405–3416.
    [21] Grimme, S. J. Chem. Phys. 2006, 124, 034108.
    [22] Chai, J.-D.; Head-Gordon, M. J. Chem. Phys. 2008, 128, 084106.
    [23] Peverati, R.; Truhlar, D. G. J. Phys. Chem. Lett. 2011, 2, 2810–2817.
    [24] Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618–622.
    [25] T, P.; Pattison, V. A.; Sidler, J. D.; Bieber, J. B. J. Am. Chem. Soc. 1966, 88, 78–84.
    [26] Slater, J. C. Phys. Rev. 1929, 34, 1293–1322.
    [27] Condon, E. U. Phys. Rev. 1930, 36, 1121–1133.
    [28] Krishnan, R.; Pople, J. A. Int. J. Quantum Chem. 1978, 14, 91–100.
    [29] Cížek, J. In Advances in Chemical Physics; LeFebvre, R., Moser, C., Eds.; Advances in Chemical Physics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1969; Vol. 14.
    [30] Pople, J. A.; Head-Gordon, M.; Raghavachari, K. J. Chem. Phys. 1987, 87, 5968–5975.
    [31] Hegarty, D.; Robb, M. A. Mol. Phys. 1979, 38, 1795–1812.
    [32] Werner, H.; Meyer, W. J. Chem. Phys. 1980, 73, 2342–2356.
    [33] Werner, H.; Meyer, W. J. Chem. Phys. 1981, 74, 5794–5801.
    [34] Knowles, P. J.; Werner, H.-J. Chem. Phys. Lett. 1985, 115, 259–267.
    [35] Werner, H.; Knowles, P. J. J. Chem. Phys. 1985, 82, 5053–5063.
    [36] Werner, H.-J.; Reinsch, E.-A. J. Chem. Phys. 1982, 76, 3144–3156.
    [37] Werner, H.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803–5814.
    [38] Maurice, D.; Head-Gordon, M. Mol. Phys. 1999, 96, 1533–1541.
    [39] Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quantum Chem. 1978, 14, 545–560.
    [40] Cremer, D. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 482–503.
    [41] Foster, J. M.; Boys, S. F. Rev. Mod. Phys. 1960, 32, 300–302.
    [42] Kleier, D. A.; Halgren, T. A.; Hall, J. H.; Lipscomb, W. N. J. Chem. Phys. 1974, 61, 3905–3919.
    [43] Høyvik, I.-M.; Jansik, B.; Jørgensen, P. J. Chem. Phys. 2012, 137, 224114.
    [44] Edmiston, C.; Ruedenberg, K. Rev. Mod. Phys. 1963, 35, 457–464.
    [45] Urabe, D.; Nishikawa, T.; Isobe, M. Chem. Asian J. 2006, 1, 125–135.
    [46] Ohyabu, N.; Nishikawa, T.; Isobe, M. J. Am. Chem. Soc. 2003, 125, 8798–8805.
    [47] Nishikawa, T.; Asai, M.; Isobe, M. J. Am. Chem. Soc. 2002, 124, 7847–7852.
    [48] Isobe, M.; Fukuda, Y.; Nishikawa, T.; Chabert, P.; Kawai, T.; Goto, T. Tetrahedron Lett. 1990, 31, 3327–3330.
    [49] Bamba, M.; Nishikawa, T.; Isobe, M. Tetrahedron 1998, 54, 6639–6650.
    [50] Nishikawa, T.; Isobe, M. Chem. Rec. 2013, 13, 286–302.
    [51] Yotsu-Yamashita, M.; Abe, Y.; Kudo, Y.; Ritson-Williams, R.; Paul, V. J.; Konoki, K.; Cho, Y.; Adachi, M.; Imazu, T.; Nishikawa, T.; Isobe, M. Mar. Drugs 2013, 11, 2799–2813.
    [52] Nakai, T.; Tomooka, K. Pure Appl. Chem. 1997, 69, 595–600.
    [53] Tayama, E.; Sugai, S.; Hara, M. Tetrahedron Lett. 2006, 47, 7533–7535.
    [54] Nakai, T.; Mikami, K. Chem. Rev. 1986, 86, 885–902.
    [55] Rimarčík, J.; Lukeš, V.; Klein, E.; Ilcin, M. J. Mol. Struct. THEOCHEM 2010, 952, 25–30.
    [56] Litwinienko, G.; Beckwith, A. L. J.; Ingold, K. U. Chem. Soc. Rev. 2011, 40, 2157.
    [57] Wu, Y. D.; Houk, K. N.; Marshall, J. A. J. Org. Chem. 1990, 55, 1421–1423.
    [58] Antoniotti, P.; Tonachini, G. J. Org. Chem. 1998, 63, 9756–9762.
    [59] Haeffner, F.; Houk, K. N.; Schulze, S. M.; Lee, J. K. J. Org. Chem. 2003, 68, 2310–2316.
    [60] Sheldon, J. C.; Taylor, M. S.; Bowie, J. H.; Dua, S.; Chia, C. S. B.; Eichinger, P. C. H. J. Chem. Soc. Trans. II 1999, 333–340.
    [61] Frisch, M. J. et al. Gaussian 09, Revision B.01. Gaussian Inc. Wallingford CT 2009.
    [62] Seeman, J. I. J. Chem. Educ. 1986, 63, 42–48.
    [63] Andraos, J. J. Phys. Chem. A 2003, 107, 2374–2387.
    [64] Hayakawa, K.; Hayashida, A.; Kanematsu, K. J. Chem. Soc. Chem. Commun. 1988, 1108.
    [65] Hanessian, S.; Dorich, S.; Chattopadhyay, A. K.; Büschleb, M. J. Org. Chem. 2013, 78, 8915–8921.
    [66] Onyeozili, E. N.; Mori-Quiroz, L. M.; Maleczka, R. E. Tetrahedron 2013, 69, 849–860.
    [67] Mori-Quiroz, L. M.; Maleczka, R. E. J. Org. Chem. 2015, 80, 1163–1191.
    [68] Nakai, T.; Mikami, K.; Taya, S.; Fujita, Y. J. Am. Chem. Soc. 1981, 103, 6492–6494.
    [69] Goeppel, D.; Münster, I.; Brückner, R. Tetrahedron 1994, 50, 3687–3708.
    [70] Tomooka, K.; Igarashi, T.; Kishi, N.; Nakai, T. Tetrahedron Lett. 1999, 40, 6257–6260.
    [71] Gawley, R. E.; Moon, K. Org. Lett. 2007, 9, 3093–3096.
    [72] Garst, J. F.; Smith, C. D. J. Am. Chem. Soc. 1976, 98, 1526–1537.
    [73] Weiske, T.; Schwarz, H. Tetrahedron 1986, 42, 6245–6251.
    [74] Bertolli, P.; Farley, R. D.; Fletcher, M. D.; Horton, P. N.; Hursthouse, M. B.; Paradela, C.; von Vacano, B. Tetrahedron Lett. 2006, 47, 7939–7942.
    [75] Ghigo, G.; Cagnina, S.; Maranzana, A.; Tonachini, G. J. Org. Chem. 2010, 75, 3608–3617.
    [76] Biswas, B.; Collins, S. C.; Singleton, D. A. J. Am. Chem. Soc. 2014, 136, 3740–3743.
    [77] Tomooka, K.; Igarashi, T.; Nakai, T. Tetrahedron 1994, 50, 5927–5932.
    [78] Strunk, S.; Schlosser, M. Eur. J. Org. Chem. 2006, 4393–4397.
    [79] Gao, G.; Gua, F. L.; Jiang, J. X.; Jiang, K.; Sheng, C. Q.; Lai, G. Q.; Xu, L. W. Chem. - A Eur. J. 2011, 17, 2698–2703.
    [80] Velasco, R.; Feberero, C.; Sanz, R. Org. Lett. 2015, 17, 4416–4419.
    [81] Liu, H.; Deng, K.; Cohen, T.; Jordan, K. D. Org. Lett. 2007, 9, 1911–1914.
    [82] Beste, A.; Buchanan, A. C. J. Org. Chem. 2009, 74, 2837–2841.
    [83] Deora, N.; Carlier, P. R. J. Org. Chem. 2010, 75, 1061–1069.
    [84] Ando, K.; Morokuma, K. Theor. Chem. Acc. 2011, 130, 323–331.
    [85] Fressigné, C.; Lhermet, R.; Girard, A.-L.; Durandetti, M.; Maddaluno, J. J. Org. Chem. 2013, 78, 9659–9669.
    [86] Rodriguez, C.; Nudelman, N. S. J. Phys. Org. Chem. 2014, 27, 322–326.
    [87] Roca-López, D.; Polo, V.; Tejero, T.; Merino, P. Eur. J. Org. Chem. 2015, 2015, 4143–4152.
    [88] Gao, F.; Kim, B.-S.; Walsh, P. J. Chem. Sci. 2016, 7, 976–983.
    [89] Mattalia, J.-M.; Nava, P. Eur. J. Org. Chem. 2016, 2016, 394–401.
    [90] Maleczka R.E., J.; Geng, F. J. Am. Chem. Soc. 1998, 120, 8551–8552.
    [91] Tsubuki, M.; Kamata, T.; Okita, H.; Arai, M.; Shigihara, A.; Honda, T. Chem. Commun. 1999, 2263–2264.
    [92] Ikemoto, H.; Sasaki, M.; Takeda, K. Eur. J. Org. Chem. 2010, 6643–6650.
    [93] Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M. Wires Comput. Mol Sci 2012, 2, 242–253.
    [94] Tomooka, K.; Komine, N.; Nakai, T. Tetrahedron Lett. 1998, 39, 5513–5516.
    [95] Nicholas, K. M.; Pettit, R. J. Organomet. Chem. 1972, 44, 21–24.
    [96] Lockwood, R. F.; Nicholas, K. M. Tetrahedron Lett. 1977, 18, 4163–4166.
    [97] Chang, W. C.; Isobe, M. Tetrahedron 2014, 70, 8324–8333.
    [98] Asamizu, T.; Naruse, R.; Yongxue, G.; Kaneda, K. Tetrahedron Lett. 2015, 56, 4674–4677.
    [99] Schreiber, S. L.; Sammakia, T.; Crowe, W. E. J. Am. Chem. Soc. 1986, 108, 3128–3130.
    [100] Nicholas, K. M. Acc. Chem. Res. 1987, 20, 207–214.
    [101] Teobald, B. J. Tetrahedron 2002, 58, 4133–4170.
    [102] Green, J. R. Curr. Org. Chem. 2001, 5, 809–826.
    [103] Carbery, D. R.; Reignier, S.; Miller, N. D.; Adams, H.; Harrity, J. P. A. 2003, 4392–4399.
    [104] Rodríguez-López, J.; Ortega, N.; Martín, V. S.; Martín, T. Chem. Commun. 2014, 50, 3685.
    [105] Terada, M.; Ota, Y.; Li, F.; Toda, Y.; Kondoh, A. J. Am. Chem. Soc. 2016, 138, 11038–11043.
    [106] Pfletschinger, A.; Koch, W.; Schmalz, H.-G. Chem. – A Eur. J. 2001, 7, 5325–5332.
    [107] Rodríguez-Lõpez, J.; Pinacho Crisõstomo, F.; Ortega, N.; Lõpez-Rodríguez, M.; Martín, V. S.; Martín, T. Angew. Chem. Int. Ed. 2013, 52, 3659–3662.
    [108] De La Torre, M. C.; Asenjo, M.; Raḿrez-López, P.; Sierra, M. A. Eur. J. Org. Chem. 2015, 2015, 1054–1067.
    [109] Álvaro, E.; De La Torre, M. C.; Sierra, M. A. Chem. - A Eur. J. 2006, 12, 6403–6411.
    [110] Taj, R. A.; Green, J. R. J. Org. Chem. 2010, 75, 8258–8270.
    [111] Hamajima, A.; Isobe, M. Angew. Chem. Int. Ed. 2009, 48, 2941–2945.
    [112] Tsuboi, K.; Ichikawa, Y.; Jiang, Y.; Naganawa, A.; Isobe, M. Tetrahedron 1997, 53, 5123–5142.
    [113] Tanaka, S.; Tsukiyama, T.; Isobe, M. Tetrahedron Lett. 1993, 34, 5757–5760.
    [114] Tanaka, S.; Isobe, M. Tetrahedron 1994, 50, 5633–5644.
    [115] Isobe, M.; Nishizawa, R.; Hosokawa, S.; Nishikawa, T. Chem. Commun. 1998, 2665–2676.
    [116] von Itzstein, M. et al. Nature 1993, 363, 418–423.
    [117] Magano, J. Chem. Rev. 2009, 109, 4398–4438.
    [118] Palazón, J.; Martín, V. S. Tetrahedron Lett. 1995, 36, 3549–3552.
    [119] Crisóstomo, F. R. P.; Carrillo, R.; Martín, T.; Martín, V. S. Tetrahedron Lett. 2005, 46, 2829–2832.
    [120] Schreiber, S. L.; Klimas, M. T.; Sammakia, T. J. Am. Chem. Soc. 1987, 109, 5749–5759.
    [121] Kuhn, O. J. Am. Chem. Soc. 1998, 120, 900–907.
    [122] Yamanaka, M.; Nakamura, E. J. Am. Chem. Soc. 2001, 123, 1703–8.
    [123] de Bruin, T. J. M.; Milet, A.; Robert, F.; Gimbert, Y.; Greene, A. E. J. Am. Chem. Soc. 2001, 123, 7184–7185.
    [124] de Bruin, T. J. M.; Milet, A.; Greene, A. E.; Gimbert, Y. J. Org. Chem. 2004, 69, 1075–1080.
    [125] Platts, J. A.; Evans, G. J. S.; Coogan, M. P.; Overgaard, J. Inorg. Chem. 2007, 46, 6291–6298.
    [126] Kumar, R.; Lang, S.; Englezos, P.; Ripmeester, J. J. Phys. Chem. A 2009, 113, 6308–6313.
    [127] Amiralaei, S.; Gauld, J.; Green, J. R. Chem. - A Eur. J. 2011, 17, 4157–4165.
    [128] Valderas, C.; de la Torre, M. C.; Fernández, I.; Muñoz, M. P.; Sierra, M. a. Organometallics 2013, 32, 951–956.
    [129] Lesage, D.; Milet, A.; Memboeuf, A.; Blu, J.; Greene, A. E.; Tabet, J.-C.; Gimbert, Y. Angew. Chem. Int. Ed. 2014, 53, 1939–1942.
    [130] Valderas, C.; Casarrubios, L.; Lledos, A.; Ortuño, M. A.; de la Torre, M. C.; Sierra, M. A. Chem. - A Eur. J. 2016, 22, 9015–9023.
    [131] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
    [132] Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
    [133] Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623–11627.
    [134] Mayr, H.; Kuhn, O.; Schlierf, C.; Ofial, A. R. Tetrahedron 2000, 56, 4219–4229.
    [135] Gruselle, M.; Malezieux, B.; Andres, R.; Amouri, H.; Vaissermann, J.; Melikyan, G. G. Eur. J. Inorg. Chem. 2000, 359–368.
    [136] Vizniowski, C. S.; Green, J. R.; Breen, T. L.; Andrea V. Dalacu, J. Org. Chem. 1995, 60, 7496–7502.
    [137] Laidler, K. J.; King, M. C. J. Phys. Chem. 1983, 87, 2657–2664.
    [138] Moore, A.; Ortin, Y.; Müller-Bunz, H.; McGlinchey, M. J. Organometallics 2010, 29, 4882–4892.

    QR CODE