研究生: |
張崇綸 Chang, Chung-Lun |
---|---|
論文名稱: |
鍺奈米點應用於儲能電池之機制研究與製程開發 Study on the Mechanism and Process Development of the Application of Germanium Nano-dot in Energy Storage Battery |
指導教授: |
柳克強
Leou, Keh-Chyang |
口試委員: |
吳永俊
Wu, Yung-Chun 王敏全 Wang, Min-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 電漿輔助化學氣相沉積法 、光學放射光譜儀 、鍺奈米點 、儲電層 、儲能電池 |
外文關鍵詞: | PECVD, OES, Ge nano-dot, Charge storage layer, Energy storage battery |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,日本開發出新型全固態結構的二次電池,名叫Battenice,其輸出密度及循環壽命都優於鋰電池,本研究將改變此二次電池結構中之儲電層製備方式,期許製作出能與半導體產品結合的新型儲能電池。本實驗儲電層的製作主要分為兩個步驟,首先藉由Plasma-enhanced chemical vapor deposition (PECVD)成長SiGe薄膜,接下來經由O2熱退火處理將Si原子氧化,Ge原子重新組合成奈米晶粒並鑲嵌於SiO2當中形成儲電層,在本研究主要目地為開發SiGe薄膜沉積及O2熱退火處理之製程,並且分析儲電層之物理性質及電特性的研究。
首先,PECVD沉積SiGe薄膜時,最直接影響薄膜特性的是成長時的電漿環境,所以使用Optical Emission Spectroscopy(OES)即時量測成長薄膜時的電漿光譜,分析特徵譜線之變化和SiGe薄膜特性之關係,結果顯示OES-ratio (Ge*/Si*)與薄膜中Ge含量隨參數的變化趨勢相似,兩者隨製程功率及RGeH4(≡〖GeH〗_4/(〖GeH〗_4+〖SiH〗_4 ))增加分別呈現下降及上升的趨勢,代表OES-ratio (Ge*/Si*)及薄膜中Ge含量具有強烈關聯性。而OES-ratio(Si/SiH)和OES-ratio(Hβ/Hα)可以定性分析電漿中的電子溫度,在改變功率(50W至100W)及RGeH4(0.2至0.33)時,兩者OES-ratio變化幅度不大,最大幅度小於7 %。最後藉由H2 fulcher分析電漿中之電子密度,結果顯示H2 fulcher隨著功率及RGeH4增加而上升,表示電漿中之電子密度也隨之上升。於薄膜沉積過程,藉由電漿特徵譜線分析可以了解在不同參數下薄膜中Ge含量及電漿特性的變化。
為了讓薄膜退火後所形成之Ge奈米點能夠彼此有效隔絕,所以薄膜Ge含量選擇30-40%範圍內,於電漿參數功率為100 W及RGeH4為0.2時所沉積之SiGe薄膜之Ge含量為34.61%,其拉曼光譜顯示此薄膜有三個主要的特徵峰,分別為非晶Ge-Ge(250 cm-1)、結晶Ge-Ge(300 cm-1)及結晶Si-Ge(420 cm-1),代表薄膜由部分非晶及結晶結構組成,接下來,經熱退火條件O2/900°C /20 min處理後所形成之儲電層其拉曼光譜的非晶Ge-Ge拉曼鋒值大幅下降,薄膜結構轉而由結晶Ge-Ge及Si-Ge組成。C-V量測方面,在施加偏壓±10 V(-10 V→10 V→-10 V)時,可得記憶視窗約2.5 V,儲存電荷數量密度約為2.15×〖10〗^12 〖cm〗^(-2),於施加±20 V時,能得到更寬的記憶視窗,代表儲電量增加,遲滯曲線的方向為順時針,判斷主要電荷來源為電洞由上電極端注入,不過將此儲電層製作成新型儲能電池結構下運作時,其充放電特性則類似一個電阻元件,並沒有儲電的效果。
In recent, Japanese companies developed a new structure of secondary cell, called “Battenice”, the output density and cycle life are better than Lithium batteries. This study will use a different process to produce the charge storage layer of battery, promising to produce a new type battery which can be combined with semiconductor products. The main procedure to produce charge storage layer in this study is to deposit SiGe film by PECVD, followed by oxygen thermal annealing treatment to oxidize Si atoms into SiO2, assemble Ge atoms to form nano-crystalline grains. Then, the physical properties and electrical characteristics of the charge storage layer are discussed.
In order to investigate the effect of plasma environment on the deposition of SiGe film, the plasma spectrum was in-situ monitored using optical emission spectrum, OES. And the relationship between the specific spectrum and the characteristics of SiGe film was analyzed. The results show that the OES-ratio (Ge*/Si*) and the Ge content in the film have the same trend as the parameter change. The OES-ratio (Ge*/Si*) and the Ge content in the film show a downward and rise trend with the process power and RGeH4(≡〖GeH〗_4/(〖GeH〗_4+〖SiH〗_4 )) increasing respectively. It means OES-ratio(Ge*/Si*) exists strong correlation to the Ge content in the film. Then, OES-ratio(Si/SiH) and OES-ratio(Hβ/Hα) can be used to analyze the electron temperature in the plasma. When changing the power (50W to 100W) and RGeH4 (0.2 to 0.33), the above two OES-ratios change a little (Maximum change is less than 7%). Finally, H2 fulcher is used to analyze the electron density in the plasma. The results show that H2 fulcher increases with power and RGeH4, indicating that the electron density in the plasma also increases. So, effect of process parameters on Ge content and plasma characteristic can be understood by the OES analysis. In order to allow the Ge nano-dots formed after the film annealing to be effectively isolated from each other, the Ge content of the film is selected to be in the range of 30 to 40%, and the Ge content of the SiGe film deposited by the plasma parameter power of 100 W and RGeH4 of 0.2 is 34.61%. The Raman spectra of this film shows three specific peaks at 250 cm-1, 300 cm-1 and 420 cm-1, respectively, corresponding to the vibration modes are amorphous Ge-Ge, crystalline Ge-Ge and Si-Ge. It indicates that the film is consisting with a portion of amorphous and crystalline. Then, the Raman peak of amorphous Ge-Ge is significantly decreased after thermal annealing treatment (O2 /900 °C/20 min). This phenomenon represents the crystallization of the film. In the C-V measurement, a memory window, 2.5 V, and storage charge number density, 2.15×〖10〗^12 〖cm〗^(-2), are observed with applying 10 volt sweep range . And it is a clockwise type hysteresis, which means that carriers from the top electrode into nano-dots embedded in insulator. However, the battery which made by this charge storage layer, the charge and discharge characteristic is similar to a resistance component, and no storage effect.
[1] L. P. WU Jiaoyang, HU Yongsheng, LI Hong, "Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries," Energy Storage Science and Technology, 2016.
[2] 佐藤正春, 岩佐繁之, 森. 由紀子, 中. 謙太郎, and 坂. 裕, "電池," 2002.
[3] K. K. N. Micronics, "Secondary cell (WO 2012046325 A1)," 2012.
[4] L. MICRONICS JAPAN CO., "二次電池Battenice の研究開発体制の変更に関するお知らせ," 2015.
[5] S. Ban, J. J. Zhang, L. Zhang, K. Tsay, D. T. Song, and X. T. Zou, "Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent," Electrochimica Acta, vol. 90, pp. 542-549, Feb 2013.
[6] D. Tsoukalas, P. Dimitrakis, S. Kolliopoulou, and P. Normand, "Recent advances in nanoparticle memories," Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 124, pp. 93-101, Dec 2005.
[7] P. Dimitrakis, "Charge-Trapping Non Volatile Memories Volume Basic and Advanced Devices," 2015.
[8] 梶. 博司, "半導体二次電池(グエラバッテリー)の新規開発," 2010.
[9] G. Zhou, B. Wu, X. Liu, P. Li, S. Zhang, B. Sun, et al., "Two-bit memory and quantized storage phenomenon in conventional MOS structures with double-stacked Pt-NCs in an HfAlO matrix," Phys Chem Chem Phys, vol. 18, pp. 6509-14, Mar 07 2016.
[10] C. Zhao, C. Z. Zhao, S. Taylor, and P. R. Chalker, "Review on Non-Volatile Memory with High-k Dielectrics: Flash for Generation Beyond 32 nm," Materials, vol. 7, pp. 5117-5145, Jul 2014.
[11] 陳勇全, "不同電荷儲存層之奈米晶記憶體研究," 國立台灣科技大學碩士論文, 2010.
[12] "https://www.slideshare.net/5045033/ss-6350150," 2010.
[13] P. C. Wu, Y. Dai, Y. Ye, X. L. Fang, T. Sun, C. Liu, et al., "High-performance non-volatile CdS nanobelt-based floating nanodot gate memory," Journal of Materials Chemistry, vol. 20, p. 4404, 2010.
[14] T. C. Chang, S. T. Yan, P. T. Liu, C. W. Chen, S. H. Lin, and S. M. Sze, "A novel approach of fabricating germanium nanocrystals for nonvolatile memory application," Electrochemical and Solid State Letters, vol. 7, pp. G17-G19, Jan 2004.
[15] C. H. Tu, T. C. Chang, P. T. Liu, H. C. Liu, S. M. Sze, and C. Y. Chang, "Improved memory window for Ge nanocrystals embedded in SiON layer," Applied Physics Letters, vol. 89, p. 3, Oct 2006.
[16] 王敏全, "鍺量子點在記憶體及光電元件的應用與研究," 國立中山大學碩士論文, 2003.
[17] 林泩宏, "奈米點非揮發性記憶體元件之研究," 國立交通大學碩士論文, 2004.
[18] S. H. Hong, M. C. Kim, P. S. Jeong, S. H. Choi, and K. J. Kim, "Ge-nanodot multilayer nonvolatile memories," Nanotechnology, vol. 19, p. 4, Jul 2008.
[19] X. B. L. P F Lee, J Y Dai, H LWChan, Emil Jelenkovic, K Y Tong, "Memory effect and retention property of Ge nanocrystal embedded Hf-aluminate high-k gate dielectric," Nanotechnology, vol. 1202-1206, 2006.
[20] I. G.-G. Véronique Massereau-Guilbaud, and André Plain, "Determination of the electron temperature by optical emission spectroscopy in a 13.56 MHz dusty methane plasma: Influence of the power," APPLIED PHYSICS, vol. 106, 113305, 2009.
[21] J. d. K. M. M. de Jong, J. K. Rath, and R. E. I. Schropp, "An optical analysis tool for avoiding dust formation in very-high frequency hydrogen diluted silane plasmas at low substrate temperatures," PHYSICS OF PLASMAS, 2012.
[22] T. N. Madoka Takai, Michio Kondo, Akihisa Matsuda, "Chemical-reaction dependence of plasma parameter in reactive silane plasma," Science and Technology of Advanced Materials pp. 495-503, 2000.
[23] U. Fantz, "Spectroscopic diagnostics and modelling of silane microwave plasmas," lasma Phys, pp. 1035–1056, 1998.
[24] D. J. Y. Se Youn Moon , S.E. Lee , Heonmin Lee, "In-situ monitoring and control of hydrogenated amorphous silicone germanium band-gap profiling during plasma deposition process," Current Applied Physics, 2013.
[25] M. I. Kabir, N. Amin, A. Zaharim, and K. Sopian, "Effect of Energy Bandgap of the Amorphous Silicon Carbide (A-Sic: H) Layers On A-Si Multijuntion Solar Cells from Numerical Analysis," Mathematical Methods, Systems Theory and Control, pp. 334-+, 2009.
[26] S. M. Sze, "Citation Classic - Physics of Semiconductor-Devices," Current Contents/Engineering Technology & Applied Sciences, pp. 28-28, 1982.
[27] T. H. Sun and C. P. Tseng, "Operation manual of In-line Sputtering System for Large Area Deposition," Institute of NuclearEnergy Research, 2015.
[28] C. H. M. v. d. W. L.W. Veldhuizen, Y. Kuang,N.J. Bakker,S.J.Yun,R.E.I.Schropp, "Optimization of hydrogenated amorphous silicon germanium thin films and solar cells deposited by hot wire chemical vapor deposition," Thin Solid Films, 2015.
[29] E.-K. L. L. Tsybeskov, H.-Y. Chang, B. V. Kamenev, D. J. Lockwood, J.-M. Baribeau, and T. I. Kamins, "Three-Dimensional Silicon-Germanium Nanostructures for CMOS Compatible Light Emitters and Optical Interconnects," Advances in Optical Technologies, p. 16, 2008.
[30] C. B. e. al., "Dielectric anti-reflective coatings for DUV lithography," Semipark Tech., vol. 40, p. 1, 1997.
[31] A. R. Forouhi and I. Bloomer, "n&k Analyzer," n&k Technology, 2002.
[32] J. F. M. A. J. Perrin, "Dissociative excitation of SiH4, SiD4, Si2H6 and GeH4 by 0 100 eV electron impact," vol. 80, pp. 351-356, 1983.
[33] İ. D. a. M. C. M. v. d. Sanden, "Direct characterization of nanocrystal size distribution using Raman spectroscopy," APPLIED PHYSICS, vol. 134310, 2013.