簡易檢索 / 詳目顯示

研究生: 李欣燁
Shin-Ye Li
論文名稱: 在時變延遲下分碼多重存取微細胞通訊系統中的強健型功率控制
Robust Power Control of CDMA Celluliar Radio Systems with Time-varying Delays
指導教授: 陳博現
Bor-Sen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 37
中文關鍵詞: 功率控制史密斯預測濾波器可能性函數
外文關鍵詞: power control, Smith prediction filter, likelihood function
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在直接序列分碼多重存取(DS-CDMA)通訊系統的傳統功率控制設計中,史密斯預測濾波器(Smith prediction filter)已經被利用於補償固定的迴路延遲而追蹤指定的功率對干擾雜訊比(SINR)。然而史密斯預測濾波器對於時變的迴路延遲系統非常靈敏,因此在本篇論文中提出多模式史密斯預測濾波器(multiple-mode Smith prediction filter)來有效率地補償時變的迴路延遲系統問題,而且利用基於追蹤誤差的可能性函數(likelihood function)來計算每一個模式史密斯預測濾波器的權重。因此對於時變延遲的分碼多重存取微細胞通訊系統,多模式史密斯預測濾波器是一個非常強健的功率控制器。
    所以在此系統中,如何在時變的迴路延遲、非確定的通道衰減、未知的干擾及非線性傳輸限制等環境下,提升更高的通訊品質及更大的系統使用容量是目前主要研究的重心。尤其在未來第三代行動通訊系統中,行動台所扮演的角色不再只是單純的傳送語音,而是應用在更多的娛樂及資料傳輸上,例如:多媒體等。因此在資源有限的行動台上,功率控制及傳送都會受到限制而造成延遲。為了克服時變的迴路延遲以及所有不確定的影響,我們提出了多模式史密斯預測濾波器來補償時變的迴路延遲和通道中不確定的影響,而且為了掌握時變延遲的狀態,我們提出了可能性函數來估測每一個延遲的可能性,進而決定每一個模式的史密斯預測濾波器的權重,以達到更準確的迴路延遲補償。


    In conventional power control design of direct-sequence code division multiple access (DS-CDMA) systems, Smith prediction filter has been employed to compensate for the fixed round-trip delay to track a target signal to interference and noise ratio (SINR). However, Smith prediction filter is sensitive to the variation of round trip delay. In this study, a multiple-mode Smith predictor is proposed to cooperate with to treat efficiently the compensation problem of time-varying round-trip delay in the power control design of DS-CDMA systems. The likelihood function based on the probability density function of tracking errors is employed to compute the weighting of cooperation for each mode of Smith predictor. From simulation results, it is shown that the proposed multiple-mode power control method is robust to time-varying round-trip delay in CDMA cellular radio systems.

    Contents 1.Introduction 1 1.1 Motivation and Related Researchs . . . . . . . . 1 1.2 Contribution of this Thesis . . . . . . . . . . .3 1.3 Organization of this Thesis . . . . . . . . . . .4 2. Power Control Model and Problem Description 5 2.1 Model of Channel . . . . . . . . . . . . . . . . 5 2.2 Model of Time-varying Round-trip Delay . . . . . 7 2.3 Model of Receiver . . . . . . . . . . . . . . . .8 2.4 Model of Transmitter . . . . . . . . . . . . . . 9 3. Multiple-mode Smith Prediction Power Control Scheme 11 3.1 Mixed Power Update Signal . . . . . . . . . 11 3.2 Probability of each mode Smith Predictor . .14 3.3 Compensation of the Time-varying Round-trip Delay by the Proposed Method . . . . . . . . . . . . . . .16 4. Simulation Results and Discussion 21 4.1 Conventional Power Control with Fixed Step Size . . . . . . . . . . . . . . . . . . . . . . . . . . .23 4.2 Traditional Smith . . . . . . . . . . . . . 23 4.3 Multiple-mode Smith . . . . . . . . . . . . 23 4.4 Simulation Results . . . . . . . . . . . . .24 4.4.1 Effect of Channel Fading and Interference . . . . . . . . . . . . . . . . . . . . . . .24 4.4.2 Effect of the Outage Probability . . 27 4.4.3 Effect of Mobile Users . . . . . . . 27 5. Conclusions 21 Bibliography 32 List of Figures 2.1 The closed-loop power control system for each Users. .6 2.2 The simplified closed-loop power control system for each user. . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 The structure of the multiple-mode Smith predictor. .12 3.2 Standard deviation vs. control parameter. . . . . . .20 4.1 The Markov chain model for time-varying round-trip delay. . . . . . . . . . . . . . . . . . . . . . . . . . .22 4.2 Standard deviation vs. v. . . . . . . . . . . . . . .26 4.3 Outage probability vs. v. . . . . . . . . . . . . . .28 4.4 Outage probability vs. SINR margin. . . . . . . . . .29 4.5 Standard deviation vs. mobile users at different velocities. . . . . . . . . . . . . . . . . . . . . . . . 30

    [1] G. L. Stuber, “Principles of Mobile Communication,” 2nd, Kluwer Academic Publishers, 2001.
    [2] S. A. Grandhi, R. Vijayan, David J. Goodman and J. Zander, “Centralized Power Control in Cellular Radio System,” IEEE Trans. Vehicular Technology Vol. 42, no. 4, Nov. 1993.
    [3] J. F. Chamberland and V. V. Veeravalli, “Decentralized dynamic power control for cellular CDMA systems, ” IEEE Trans. Wireless Com., vol. 2, no. 3, pp. 466-468, May 2003.
    [4] A. El-Osery and C.Abdallah, “Distributed Power Control in CDMA Cellular Systems,” IEEE Antennas and Propagation Magazine, vol. 42, no. 4 pp. 152-159 Aug. 2000.
    [5] J. Zander, “Distributed co-channel interference control in cellular radio system,” IEEE Trans. Vehicular Technology, vol. 41, pp. 305-311, Aug. 1992.
    [6] G. J. Foschini and Z. Miljanic, “A sample distributed autonomous power control algorithm and its convergence,” IEEE Trans. Vehicular Technology, Vol. 42, pp. 641-646, Nov. 1993.
    [7] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Pricing and power control in a multi-cell wireless data network,” IEEE Journal on selected area in Com., Vol. 19, no. 10, p.p.1882-1892, Oct. 2001.
    [8] B. K. Lee, H. W. Chen, and B. S. Chen, “Power Control of Cellular Radio System via Robust Smith Prediction Filter,” IEEE Trans. Wireless Com. Vol. 3, p.p.1822-1831, Sep. 2004.
    [9] F. Gunnarsson, F. Gutaffson, and J. Blom, “Dynamical Effects of Time Delays and Time Delay Compensation in Power Controlled DS-CDMA,” IEEE Journal on Sselected Areas in Com., vol.19, no.1, pp.141-151, Jan. 2001.
    [10] H. J. Su and E. Geraniotis, “Adaptive Closed-Loop Power Control with Quantized Feedback and Loop Filtering,” IEEE Trans. Wireless Com., vol.1, no.1, pp. 76-86. Jan. 2002.
    [11] C. W. Sung and W. S. Wong, “A Noncooperative Power Control Game for Multirate CDMA Data Networks,” IEEE Trans. Wireless Com., vol.2, no.1, pp. 186-194, Jan. 2003.
    [12] T. S. Rappaport, “Wireless Communications principles and practice,” 2nd ed. Prentice Hall PTR, 2002.
    [13] M. Gudmundson, “Correlation Model for Shadow Fading in Mobile Radio Systems,” Electronics Letters 7th, vol.27, no.23, pp.2145-2146, Nov. 1991.
    [14] D. Giancristofaro, “Correlation model for shadow fading in mobile radio channels,” Electronics Letters 23rd, vol.32, no.11, pp.958-959, May 1996.
    [15] T. Jiang, N. D. Sidiropoulos, and G. B. Giannakis, “Kalman Filtering for Power Estimation in Mobile Communications,” IEEE Trans. on Wireless Com. Vol2, no.1, Jan. 2003.
    [16] W. C. Jakes, Tr., ed., “Microwave Mobile Communications,” Wiley, New York, 1974.
    [17] C. Wu and D. P. Bertsekas, “Distributed Power Control Algorithms for Wireless Networks,” IEEE Trans. on Vehicular Technology, vol. 50, no. 2, March 2001
    [18] K. Shoarinejad, J. L. Speyer, and G. J. Pottie, “Integrated Predictive Power Control and Dynamic Channel Assignment in Mobile Radio Systems,” IEEE Trans. on Wireless Com., vol. 2, no. 5, September 2003.
    [19] D. Kim, “Rate-Regulated Power Control for Supporting Flexible Transmission in Future CDMA Mobile Networks,” IEEE Journal on Selected Areas in Com., vol. 17, no. 5, May 1999.
    [20] G. F. Franklin, J. D. Powell, and A. Emani-Naeini, “Feedback Control of Dynamic Systems,” 4th Edition, New York: Addison-Wesley, 2002.
    [21] H. Stark and J. W. Woods, “Probability and Random Processes with Application to Signal Processing,” 3rd Edition, New Jersey: Prentice-Hall, 2002.
    [22] T. S. Rappaport, “Wireless communications principles and practice,” 2nd, Prentice-Hall, Inc.
    [23] S. Kandukuri and S. Boyd, “Optimal power control in interference-limited fading wireless channels with outage-probability specifications,” IEEE Trans. Wireless Com., vol. 1, no. 1, pp. 46-55, Jan. 2002.
    [24] S. Sarkar, T. Chen, G. Leung, L. Blessent, and E. Tiedemann, “cdma2000 Reverse Link: Design and System performance,” Vehicular technology conference, vol. 2, pp. 934-938, Sept. 2004.
    [25] N. S. Jayant and P. Noll, “Digital Coding of Waveforms,” Englewood Cilffs, NJ: Prentice Hall, 1984.
    [26] M. L. Sim, E. Gunawan, C. B. soh, and B. H. soong, “Characteristics of closed loop power control algorithms for a cellular DS/CDMA system,” IEE Proceedings on Com., vol. 145, no. 5, pp. 355-362, Oct. 1998.
    [27] K. Astrom and B. Wittenmark, “Computer Controlled Systems Theory and Design, ” Englewood Cliffs, NJ: Prentice Hall, 1984.
    [28] S. G. Glisic, “Adaptive WCDMA Theory and Practice,” Wiley, New York, 2002.
    [29] J. chen and C. M. Leung, “Applying Active Queue Management to Link Layer Buffers for Real-time Traffic over Third Generation Wireless Networks,” IEEE Conf. on Wireless Com. and Networking, vol. 3, pp. 1657-1662, March 2003.
    [30] H. Wu, S. De, C. Qiao, E. Yanmaz, and O. Tonguz, “Queuing Delay Performance of the Integrated Cellular and Ad hoc Relaying System,” IEEE Conf. on Com., vol. 2, pp. 923-927, May 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE