研究生: |
何家宇 Ho, Chia-Yu |
---|---|
論文名稱: |
以點熱源模型分析由紅外線熱像儀偵測固定於瓊脂內的金奈米棒光熱過程中樣品表面溫度於時間及空間之演進 Thermographic detection and analysis of the temporal and spatial evolution of temperature on the basis of point heat source model upon optical heating of gold nanorod assembly immobilized in agar |
指導教授: |
朱立岡
Chu, Li-Kang |
口試委員: |
陳仁焜
Chen, Jen-Kun 劉靜萍 Liu, Ching-Ping |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 點熱源 、紅外線熱像儀 、瓊脂 、金奈米棒 、光熱效應 |
外文關鍵詞: | point heat source, Thermographic, agar, gold nanorod, photothermal |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金奈米棒吸收光能後得以熱緩解至環境,且其長軸表面電漿共振吸收波長可藉由增加長寬比調變至近紅外光區。由於此波長可以穿透至生物組織深處,故使金奈米棒可廣泛應用於光熱治療中。在過去的研究中,常以紅外線熱像儀擷取的生物體表面溫度變化,評估光熱治療的效果。然而在光熱治療的過程中組織內部的溫度通常高於生物體表面的溫度,故可能低估病灶的局部溫度而導致病灶周圍的健康組織受到熱傷害。因此,吾人將金奈米棒固定於瓊脂內1 mm3的空間中,以兩種近紅外光源,808 nm連續式雷射及850 nm發光二極體,激發樣品中的金奈米棒做為熱源,用以模擬生物組織進行光熱治療的過程,並搭配紅外線熱像儀,其時間、空間與溫度解析度分別為0.16 s-1、50 μm與0.04 °C,記錄樣品表面的溫度於時間與空間演進。
吾人藉由加熱過程中表面溫度變化量之空間分佈呈現對稱性,確認樣品無熱對流的現象。吾人亦將兩種近紅外光源之照射功率依瓊脂的散射程度修正為有效功率,並依吾人建立之點熱源熱傳導模型擬合以兩種近紅外光源照射樣品30秒時沿Z軸之溫度變化量空間分布,可獲得和實驗製備加熱源一致的深度。吾人於本研究提出以非接觸式的方法進行加熱與偵測,並對加熱物體表面溫度的空間分佈進行分析的方法,預期可應用於分析光熱治療時組織內部的熱傳導模型。
Gold nanorods (AuNR) offer a tunable longitudinal surface plasmon resonance band in near infrared region for the applications in photothermal therapy. Generally, the temperatures evolution of the object of interest upon photothermal treatment was recorded by the thermographic imaging of the object surface. However, when the object surface reached the curable temperature, the interior temperature will be higher than the required and cause further damage of the healthy cells or tissues at the vicinity of the unhealthy areas. In this work, the agar was chosen to serve as a bio-mimicking tissue and a point heat source model was constructed to evaluate the accurate inner temperature though monitoring the surface temperature. An agar matrix was embedded with an 1 mm3 AuNR agar cube in different depths with respect to the agar surface. The photoexcitation of AuNR agar cube with 808 nm CW laser or 850 nm LED light leads to the evolution of increasing surface temperature monitored by an infrared thermographic camera. The temporal resolution, spatial resolution and temperature resolution in our system are 0.16 s-1、50 μm and 0.04 °C, respectively.
The symmetric distribution of the temperature change along the x and z axes through the heating center suggested that the sample is non-fluidic and the convection and the mass flow can be excluded. The injection powers of laser and LED light were corrected according to the absorption and scattering of the agar matrix for fitting the temperature distribution along the z axis after heating for 30 seconds using the point source heat transfer model. The depths of the AuNR agar cube can be determined and are consistent with the prepared depths. Thus, I reported that the development of a bio-mimicking matrix using agar upon optical heating of the embedded AuNR sample and thermographic monitoring is feasible to the analysis of the surface and interior temperature evolution.
[1] Brioude, A.; Jiang, X.; Pileni, M. J. Phys. Chem. B 2005, 109, 13138-13142.
[2] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217.
[3] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862.
[4] Link, S.; Mohamed, M.; El-Sayed, M. J. Phys. Chem. B 1999, 103, 3073-3077.
[5] Mie, G. Ann. Phys. 1908, 330, 377-445.
[6] Prescott, S. W.; Mulvaney, P. J. Appl. Phys. 2006, 99, 123504.
[7] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
[8] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094.
[9] Link, S.; El-Sayed, M. A. Int. Rev. Phys. Chem. 2000, 19, 409-453.
[10] Eesley, G. Phys. Rev. Lett. 1983, 51, 2140.
[11] Eesley, G. Phys. Rev. B 1986, 33, 2144.
[12] Ekici, O.; Harrison, R.; Durr, N.; Eversole, D.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[13] Qin, Z.; Bischof, J. C. Chem. Soc. Rev. 2012, 41, 1191-1217.
[14] Sun, C.-K.; Vallee, F.; Acioli, L.; Ippen, E.; Fujimoto, J. Phys. Rev. B 1993, 48, 12365.
[15] Maestro, L. M.; Haro-González, P.; Del Rosal, B.; Ramiro, J.; Caamano, A.; Carrasco, E.; Juarranz, A.; Sanz-Rodríguez, F.; Solé, J. G.; Jaque, D. Nanoscale 2013, 5, 7882-7889.
[16] Maksimova, I. L.; Akchurin, G. G.; Khlebtsov, B. N.; Terentyuk, G. S.; Akchurin, G. G.; Ermolaev, I. A.; Skaptsov, A. A.; Soboleva, E. P.; Khlebtsov, N. G.; Tuchin, V. V. Medical Laser Appl. 2007, 22, 199-206.
[17] Liu, J.; Detrembleur, C.; Pauw‐Gillet, D.; Mornet, S.; Jérôme, C.; Duguet, E. Small 2015, 11, 2323-2332.
[18] Kim, J.-W.; Galanzha, E. I.; Shashkov, E. V.; Moon, H.-M.; Zharov, V. P. Nat. Nanotech. 2009, 4, 688.
[19] Zha, Z.; Zhang, S.; Deng, Z.; Li, Y.; Li, C.; Dai, Z. Chem. Commun. 2013, 49, 3455-3457.
[20] Shanmugam, V.; Selvakumar, S.; Yeh, C.-S. Chem. Soc. Rev. 2014, 43, 6254-6287.
[21] Boriskina, S. V.; Ghasemi, H.; Chen, G. Mater Today 2013, 16, 375-386.
[22] Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotech. 2009, 4, 710.
[23] Zhou, W.; Shao, J.; Jin, Q.; Wei, Q.; Tang, J.; Ji, J. Chem. Commun. 2010, 46, 1479-1481.
[24] Hu, S.; Maslov, K.; Wang, L. V. Optics Lett. 2011, 36, 1134-1136.
[25] Xu, M.; Wang, L. V. Phys. Rev. E 2005, 71, 016706.
[26] Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L. V. Nat. Biotechnol. 2003, 21, 803.
[27] Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K. Sens. Actuators B 2018, 255, 1285-1290.
[28] Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K. J. Phys. Chem. C 2017, 121, 14981-14989.
[29] Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G. Appl. Phys. Lett. 2003, 83, 3555-3557.
[30] Freddi, S.; Sironi, L.; D’Antuono, R.; Morone, D.; Donà, A.; Cabrini, E.; D’Alfonso, L.; Collini, M.; Pallavicini, P.; Baldi, G. Nano Lett. 2013, 13, 2004-2010.
[31] Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.; Rodriguez, E. M.; Sole, J. G. Nanoscale 2014, 6, 9494-9530.
[32] Yang, C. Y. Appl. Math Model. 1998, 22, 1-9.
[33] Yang, C. Y. Int. J. Heat Mass Transfer 1999, 42, 345-356.
[34] Hon, Y.; Wei, T. Eng. Anal. Bound. Elem. 2004, 28, 489-495.
[35] Yang, L.; Dehghan, M.; Yu, J.-N.; Luo, G.-W. Math Comput. Simul. 2011, 81, 1656-1672.
[36] Le Niliot, C.; Lefèvre, F. Int. J. Heat Mass Transfer 2004, 47, 827-841.
[37] Ling, L.; Takeuchi, T. Commun. Comput. Phys. 2009, 5, 897-913.
[1] Brioude, A.; Jiang, X.; Pileni, M. J. Phys. Chem. B 2005, 109, 13138-13142.
[2] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217.
[3] Ghosh, S. K.; Pal, T. Chem. Rev. 2007, 107, 4797-4862.
[4] Link, S.; Mohamed, M.; El-Sayed, M. J. Phys. Chem. B 1999, 103, 3073-3077.
[5] Mie, G. Ann. Phys. 1908, 330, 377-445.
[6] Prescott, S. W.; Mulvaney, P. J. Appl. Phys. 2006, 99, 123504.
[7] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
[8] Myroshnychenko, V.; Rodríguez-Fernández, J.; Pastoriza-Santos, I.; Funston, A. M.; Novo, C.; Mulvaney, P.; Liz-Marzan, L. M.; de Abajo, F. J. G. Chem. Soc. Rev. 2008, 37, 1792-1805.
[9] Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Coord. Chem. Rev. 2005, 249, 1870-1901.
[10] Cao, J.; Sun, T.; Grattan, K. T. Sens. Actuators B 2014, 195, 332-351.
[11] Gans, R. v. Ann. Phys. 1912, 342, 881-900.
[12] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094.
[13] Link, S.; El-Sayed, M. A. Int. Rev. Phys. Chem. 2000, 19, 409-453.
[14] Eesley, G. Phys. Rev. Lett. 1983, 51, 2140.
[15] Eesley, G. Phys. Rev. B 1986, 33, 2144.
[16] Ekici, O.; Harrison, R.; Durr, N.; Eversole, D.; Lee, M.; Ben-Yakar, A. J. Phys. D: Appl. Phys. 2008, 41, 185501.
[17] Qin, Z.; Bischof, J. C. Chem. Soc. Rev. 2012, 41, 1191-1217.
[18] Sun, C.-K.; Vallee, F.; Acioli, L.; Ippen, E.; Fujimoto, J. Phys. Rev. B 1993, 48, 12365.
[19] Bauer, C.; Abid, J.-P.; Fermin, D.; Girault, H. H. J. Chem. Phys. 2004, 120, 9302-9315.
[20] Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods ACS Publications 1999
[21] Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M. J. Am. Chem. Soc. 2007, 129, 14852-14853.
[22] Hu, M.; Hartland, G. V. J. Phys. Chem. B 2002, 106, 7029-7033.
[23] Wilson, O. M.; Hu, X.; Cahill, D. G.; Braun, P. V. Phys. Rev. B 2002, 66, 224301.
[24] Werner, D.; Hashimoto, S. J. Phys. Chem. C 2010, 115, 5063-5072.
[25] Smith, A. M.; Mancini, M. C.; Nie, S. Nat. Nanotech. 2009, 4, 710.
[26] Jaque, D.; Maestro, L. M.; Del Rosal, B.; Haro-Gonzalez, P.; Benayas, A.; Plaza, J.; Rodriguez, E. M.; Sole, J. G. Nanoscale 2014, 6, 9494-9530.
[27] Chen, H.; Shao, L.; Ming, T.; Sun, Z.; Zhao, C.; Yang, B.; Wang, J. Small 2010, 6, 2272-2280.
[28] Cole, J. R.; Mirin, N. A.; Knight, M. W.; Goodrich, G. P.; Halas, N. J. J. Phys. Chem. C 2009, 113, 12090-12094.
[29] Gao, L.; Wang, L.; Li, C.; Liu, Y.; Ke, H.; Zhang, C.; Wang, L. V. J. Biomed. Opt. 2013, 18, 026003.
[30] Wang, L. V.; Hu, S. Science 2012, 335, 1458-1462.
[31] Hu, S.; Maslov, K.; Wang, L. V. Optics Lett. 2011, 36, 1134-1136.
[32] Xu, M.; Wang, L. V. Phys. Rev. E 2005, 71, 016706.
[33] Wang, X.; Pang, Y.; Ku, G.; Xie, X.; Stoica, G.; Wang, L. V. Nat. Biotechnol. 2003, 21, 803.
[34] Zha, Z.; Zhang, S.; Deng, Z.; Li, Y.; Li, C.; Dai, Z. Chem. Commun. 2013, 49, 3455-3457.
[35] Lin, C.-T.; Chen, K.-J.; Tseng, K.-C.; Chu, L.-K. Sens. Actuators B 2018, 255, 1285-1290.
[36] Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K. J. Phys. Chem. C 2017, 121, 14981-14989.
[37] Wan, X.; Li, C.; Yue, Y.; Xie, D.; Xue, M.; Hu, N. Nanotechnology 2016, 27, 445706.
[38] Freddi, S.; Sironi, L.; D’Antuono, R.; Morone, D.; Donà, A.; Cabrini, E.; D’Alfonso, L.; Collini, M.; Pallavicini, P.; Baldi, G. Nano Lett. 2013, 13, 2004-2010.
[39] Li, C.; Yue, Y. Nanotechnology 2014, 25, 435703.
[40] Ke, G.; Wang, C.; Ge, Y.; Zheng, N.; Zhu, Z.; Yang, C. J. J. Am. Chem. Soc. 2012, 134, 18908-18911.
[41] Arai, S.; Ishiwata, S. i.; Suzuki, M.; Sato, H. In Self-Calibrated Fluorescent Thermometer Nanoparticles Enable in Vivo Micro Thermography in Milimeter Scale Living Animal IEEE 2015
[42] Maestro, L. M.; Haro-González, P.; Del Rosal, B.; Ramiro, J.; Caamano, A.; Carrasco, E.; Juarranz, A.; Sanz-Rodríguez, F.; Solé, J. G.; Jaque, D. Nanoscale 2013, 5, 7882-7889.
[43] Maksimova, I. L.; Akchurin, G. G.; Khlebtsov, B. N.; Terentyuk, G. S.; Akchurin, G. G.; Ermolaev, I. A.; Skaptsov, A. A.; Soboleva, E. P.; Khlebtsov, N. G.; Tuchin, V. V. Medical Laser Appl. 2007, 22, 199-206.
[44] Yang, C. Y. Appl. Math Model. 1998, 22, 1-9.
[45] Zhao, D.; Qian, X.; Gu, X.; Jajja, S. A.; Yang, R. J. Electron. Packag. 2016, 138, 040802.
[46] Franco, A. Appl. Therm. Eng. 2007, 27, 2495-2504.
[47] Abu-Hamdeh, N. H.; Khdair, A. I.; Reeder, R. C. Int. J. Heat Mass Transfer 2001, 44, 1073-1078.
[48] Festa, C.; Rossi, A. Ann. Glaciol. 1999, 29, 151-154.
[49] Sundar, L. S.; Ramana, E. V.; Singh, M. K.; Sousa, A. C. Int. Commun. Heat Mass 2014, 56, 86-95.
[50] Li, Y.; Shi, C.; Liu, J.; Liu, E.; Shao, J.; Chen, Z.; Dorantes-Gonzalez, D. J.; Hu, X. Meas. Sci. Technol. 2013, 25, 015006.
[51] He, Y. Thermochim Acta 2005, 436, 122-129.
[52] Gustavsson, M.; Karawacki, E.; Gustafsson, S. E. Rev. Sci. Instrum. 1994, 65, 3856-3859.
[53] Gustafsson, S. E. Rev. Sci. Instrum. 1991, 62, 797-804.
[54] Hon, Y.; Wei, T. Eng. Anal. Bound. Elem. 2004, 28, 489-495.
[55] Yang, C. Y. Int. J. Heat Mass Transfer 1999, 42, 345-356.
[56] Yang, L.; Dehghan, M.; Yu, J.-N.; Luo, G.-W. Math Comput. Simul. 2011, 81, 1656-1672.
[57] Le Niliot, C.; Lefèvre, F. Int. J. Heat Mass Transfer 2004, 47, 827-841.
[58] Ling, L.; Takeuchi, T. Commun. Comput. Phys. 2009, 5, 897-913.
[59] Stephen, A. M.; Phillips, G. O. Food Polysaccharides and Their Applications CRC press 2016
[60] Bertasa, M.; Botteon, A.; Brambilla, L.; Riedo, C.; Chiantore, O.; Poli, T.; Sansonetti, A.; Scalarone, D. J. Anal. Appl. Pyrolysis 2017, 125, 310-317.
[61] Arnott, S.; Fulmer, A.; Scott, W.; Dea, I.; Moorhouse, R.; Rees, D. J. Mol. Biol. 1974, 90, 269-284.
[62] Rees, D. A. Structure, Conformation, and Mechanism in the Formation of Polysaccharide Gels and Networks Elsevier 1969
[63] Ramzi, M.; Rochas, C.; Guenet, J.-M. Macromolecules 1998, 31, 6106-6111.
[64] Huang, J.; Holt, R. G.; Cleveland, R. O.; Roy, R. A. J. Acoust. Soc. Am. 2004, 116, 2451-2458.
[65] Madsen, E. L.; Hobson, M. A.; Shi, H.; Varghese, T.; Frank, G. R. Phys. Med. Biol. 2005, 50, 5597.
[66] Paul, A.; Narasimhan, A.; Kahlen, F. J.; Das, S. K. J. Therm Biol. 2014, 41, 77-87.
[67] Zhu, J.; Marchant, R. E. Expert. Rev. Med. Devices. 2011, 8, 607-626.
[68] Zhang, M.; Che, Z.; Chen, J.; Zhao, H.; Yang, L.; Zhong, Z.; Lu, J. J. Chem. Eng. Data 2010, 56, 859-864.
[69] Leonard, J. B.; Foster, K. R.; Athley, T. W. IEEE Trans. Biomed. Eng. 1984, 533-536.
[70] Valvano, J.; Cochran, J.; Diller, K. Int. J. Thermophys. 1985, 6, 301-311.
[71] Haynes, W. M. Handbook of Chemistry and Physics CRC press 2014
[1] Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. Fundamentals of Analytical Chemistry Nelson Education 2013
[2] Faust, C. B. Modern Chemical Techniques Royal Soc. of Chemistry, Educ. Divn. 1992
[3] Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
[4] Erni, R.; Rossell, M. D.; Kisielowski, C.; Dahmen, U. Phys. Rev. Lett. 2009, 102, 096101.
[5] Aarhus UniversityTransmission and Scanning Electron Microscopy
http://inano.au.dk/research/research-platforms/nanoanalysis/transmission-and-scanning-electron-microscopy/
[6] Williams, D. B.; Carter, C. B. The Transmission Electron Microscope Springer 1996
[7] Japan Association of Remote Sensing Remote Sensing Notes 1999
http://wtlab.iis.u-tokyo.ac.jp/wataru/lecture/rsgis/rsnote/cp1/cp1-7.htm
[8] FLIR User’s Manual Flir A6xx Series FLIR 2016
[9] Vigderman, L.; Zubarev, E. R. Chem. Mater. 2013, 25, 1450-1457.
[1] Prescott, S. W.; Mulvaney, P. J. Appl. Phys. 2006, 99, 123504.
[2] Hu, M.; Chen, J.; Li, Z.-Y.; Au, L.; Hartland, G. V.; Li, X.; Marquez, M.; Xia, Y. Chem. Soc. Rev. 2006, 35, 1084-1094.
[3] Eustis, S.; El-Sayed, M. A. Chem. Soc. Rev. 2006, 35, 209-217.
[4] Brioude, A.; Jiang, X.; Pileni, M. J. Phys. Chem. B 2005, 109, 13138-13142.
[5] Zhang, M.; Che, Z.; Chen, J.; Zhao, H.; Yang, L.; Zhong, Z.; Lu, J. J. Chem. Eng. Data 2010, 56, 859-864.
[6] Valvano, J.; Cochran, J.; Diller, K. Int. J. Thermophys. 1985, 6, 301-311.
[7] Bates, O. K. Ind. Eng. Chem. 1949, 41, 1966-1968.