簡易檢索 / 詳目顯示

研究生: 林宗毅
Lin, Tsung Yi
論文名稱: 利用小角度X光散射及X光反射率研究相反電荷脂質構成之單層及雙層結構
Small Angle X-ray Scattering and Reflectivity Studies on Monolayers and Bilayers Formed by Oppositely Charged Lipid
指導教授: 林滄浪
Lin, Tsang Lang
鄭有舜
Jeng, U Ser
口試委員: 王本誠
Wang, Pen Cheng
陳燦耀
Chen, Tsan Yao
學位類別: 碩士
Master
系所名稱: 理學院 - 先進光源科技學位學程
Degree Program of Science and Technology of Synchrotron Light Source
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 86
中文關鍵詞: 小角度X光散射X光反射率脂質藥物載體
外文關鍵詞: Small angle X-ray scattering, X-ray reflectivity, Lipid, Drug carrier
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究帶正電荷的DOTAP和DC-Cholesterol與帶負電荷的DPPG之間以特定的分率(0、0.2、0.4、0.5、0.6、0.8、1)下所組成的分子單層膜及雙層膜結構,以及在水溶液之混合正電荷及負電荷樣品中加入短鏈1,2-Diheptanoyl-sn-glycero-3-phosphocholine (diC7PC),以了解是否可形成平板微胞(bilayer micelle),並另加入雙電性之DPPC,以協助其更易被diC7PC分散形成平板微胞。由正電荷及負電荷脂質分子構成的分子膜可具有較高的結構穩定性,分子膜的天然曲率也可由正電荷及負電荷脂質分子的比率作調控。實驗分為單層脂質分子膜實驗及雙層脂膜實驗兩部份,在單層脂質分子膜的實驗中,利用蘭牟爾-布羅吉槽來繪製表面壓-單分子佔據面積等溫曲線與在矽基板上製造單層脂膜,用於X光反射率的薄膜厚度及粗糙度量測,以及原子力顯微鏡的粗糙度量測與相位分析;在雙層脂膜實驗中,利用X光小角度散射來量測結構體在水溶液中形成的結構,並利用動態光散射儀量測粒徑及用穿透式電子顯微鏡觀察聚集結構的形貌。在單層脂膜的實驗結果中,從等溫曲線圖和平均每分子占的表面積偏差圖可以發現DOTAP/DPPG在任何混合比例,分子間的排列皆是親和作用,以DOTAP 40% 時分子親和作用最強。而DC-Cholesterol和DPPG的排列則大致是互斥作用,以DC-Cholesterol 20% 時最明顯,其次為60%,在40% 及80% 時則接近理想混合狀況,可見即使有正負電荷互相吸引作用,加入DC-Cholesterol,仍會使分子排列整齊度變差,使平均分子占的表面積變大。混合正電荷及負電荷脂質分子,在水溶液中,除了1:1時會沈澱,其他比例(20%, 40%, 60%, 80%)都會形成微泡,由小角度X光散射及動態光散射量測,發現較中間比例的微泡平均粒徑較大,因正負電荷分子數比例相近時,大部分都形成正負電荷分子對,這類雙鏈分子對更易形成低膜曲率之結構,因此會形成較大的微泡(膜曲率較小)。在DOTAP/DPPG的水溶液混合系統加入短鏈的diC7PC,除了1:1時仍會沈澱,在其他比例,可以將其分散組成直徑約20奈米的平板微胞,但仍會有微泡共同存在。對DC-Cholesterol/DPPG水溶液混合系統,加入短鏈的diC7PC,除了1:1正負電荷比時仍會沈澱,在其他比例也不太能將其分散產生平板微胞,所以主要仍是微泡形態。在20%DOTAP/20%DPPG/30%diC7PC的水溶液混合系統加入30%DPPC,即使1:1正負電荷比時,也可以將其分散組成直徑約20奈米的平板微胞,不會有沈澱,但仍會有微泡共同存在。對20%DC-Cholesterol/20%DPPG/ 30%diC7PC的水溶液混合系統,加入30%DPPC並沒有用,1:1正負電荷比時仍會沈澱,在其他比例主要仍是微泡形態。在加入DNA時,發現在正電荷多於負電時才會和DNA形成複合結構。研究結果顯示利用混合帶正及負電荷脂質分子可以調控其聚集結構,但DOTAP/DPPG的混合系統和DC-Cholesterol/DPPG的混合系統仍有相當不同的特性差異,值得未來從分子排列及交互作用作深入探討。


    In this thesis, we investigated the structure of mixing cationic lipid with anionic lipid. The cationic lipid and anionic lipid could form lipid pair through electrostatic interaction. We investigated the DOTAP/DPPG and the and DC-Cholesterol/DPPG systems at cationic to anionic lipid ratio of 0, 0.2, 0.4, 0.5, 0.6, 0.8, and 1. In the monolayer experiments, the pressure-surface area isotherm of the mixed lipid monolayer were measured with a Langmuir-Blodgett (LB) trough. We also prepared LB monolayer films on silicon substrates for AFM and X-ray reflectivity measurements. From the measured surface excess area of the mixed DOTAP/DPPG monolayer indicates that the interaction between the molecules is associative and the association effect reaches a maximum at around 40% DOTAP. As for the DC-Cholesterol/ DPPG system, the excess area data shows that the interaction is repulsive with peak values at 20%, then 60% of DC-cholesterol. The solution structures of the mixed system are characterized by small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS). For the 1:1 cationic to anionic lipid ratio, both systems tend to form precipitates. For other ratios, unilamellar vesicles with diameters around 100 to 200 nm are formed. The vesicle size is larger for ratios near 1:1, such as the 40% and 60%. It is due to that cationic-anionic lipid pair tend to have lower spontaneous curvature and favors the formation of larger vesicles. Adding 30% short-chain lipid, the 1,2-Diheptanoyl-sn-glycero-3-phosphocholine (diC7PC), could disperse the DOTAP/DPPG vesicles into a coexistence phase of bicelles and vesicles, except the 1:1 ratio case. As for the DC-Cholesterol/DPPG system, adding diC7PC could not disperse the vesicles into bicelles. The bonding between the DC-Cholesterol and DPPG must be stronger than the DOTAP/DPPG system. By adding 30%DPPC for the 20% DOTAP/20% DPPG/30% diC7PC system, it is possible to prevent the precipitation of the 1:1 cationic/anionic lipid mixture and to induce the formation of bicelles and vesicles in coexistence. However, this does not work for the 20% DC-Cholesterol/20% DPPG/30% diC7PC system. It is found the complexation with DNA can occur for the cases when the ratio of cationic lipid to anionic lipid is larger than 1.

    第一章 緒論 1 1.1 細胞膜 1 1.2 脂質 2 1.3 藥物傳遞 3 1.4 脂質重要參數 4 第二章 文獻回顧 6 2.1 陰陽離子表面活性劑混合影響 6 2.2 陰陽離子之兩親性分子在氣液介面排列 7 2.3 脂質體沉澱效應改善 9 2.4 非單一脂質構成脂質體的相分離現象 10 2.5 研究動機 11 第三章 實驗材料、原理與儀器介紹 12 3.1 實驗材料 12 3.1.1 脂質(Lipid) 12 3.1.2 去氧核醣核酸(Deoxyribonucleic Acid) 14 3.2 實驗原理 15 3.2.1 小角度散射(Small Angle Scattering) 15 3.2.2 X光反射率(X-ray Reflectivity) 20 3.2.3 動態光散射(Dynamic Light Scattering) 23 3.2.4 蘭牟爾-布羅吉薄膜(Langmuir-Blodgett film) 24 3.3.5 原子力顯微鏡(Atomic force microscope,AFM) 27 3.3 實驗儀器 28 3.3.1 X光小角度散射光束線 28 3.3.2 X光反射率光束線 28 3.3.3 蘭牟爾-布羅吉薄膜(Langmuir Blodgett film) 29 3.3.4 原子力顯微鏡(Atomic force microscope,AFM) 30 第四章 實驗方法及流程 31 4.1 小角度散射實驗 31 4.1.1 脂質體之合成 31 4.1.2 平板微胞之合成 32 4.1.3 平板微胞含DNA合成 32 4.1.4 小角度散射實驗流程 33 4.2蘭牟爾-布羅吉薄膜(Langmuir Blodgett film) 34 4.2.1 X-ray反射率 35 4.3 穿透式電子顯微鏡(TEM) 36 4.4 原子力顯微鏡(AFM) 37 4.5 動態光散射儀(DLS) 37 第五章 實驗結果與討論 38 5.1 探討單層膜結構 38 5.1.1 脂質分子比例之影響 38 5.2 探討脂質在水溶液中結構 48 5.2.1 脂質分子比例之影響 48 5.2.2 加入短鏈脂質之影響 54 5.2.3 降低脂質對所佔比例之影響 59 5.2.4 加入DNA之影響 65 5.2.5 巨觀下的形態學比較 68 第六章 結論 73 參考文獻 75 附錄一 77 附錄二 80 附錄三 81 附錄四 84

    [1] Reece, J. B.; Urry, L. A.; Cain, M. L.; Wasserman, S. A.; Minorsky. P. V. Campbell Biology; Benjamin Cummings: San Francisco, 2013.
    [2] Wikipedia. http://en.wikipedia.org/wiki/Lipid (accessed February 2015).
    [3] Cullis, P. Science.ca. http://www.science.ca/scientists/scientistprofile.php?pID=375 (accessed March 2015).
    [4] Kaler, E. W.; Herrington, K. L.; Murdy, A. K.; Zasadzinski, J. A. N. Phase Behavior and Structures of Mixtures of Anionic and Cationic Surfactants. J. Phys. Chem. 1992, 96, pp 6698-6707.
    [5] Panda, A. K.; Vasilev, K.; Orgeig, S.; Prestidge, C. A. Thermodynamic and structural studies of mixed monolayers: Mutual mixing of DPPC and DPPG with DOTAP at the air–water interface. Materials Science and Engineering C 2010, 30, pp 542-548.
    [6] Lee, J.; Chang, C. H. The interaction between the outer layer of a mixed ion pair amphiphile/double-chained cationic surfactant vesicle and DNA: a Langmuir monolayer study. Soft matter 2014, 10, pp 1831-1839.
    [7] Thevenot, J.; Troutier, A. L.; Laurent , D.; Delair, T. Steric Stabilization of Lipid/Polymer Particle Assemblies by Poly(ethylene glycol)-Lipids. Biomacromolecules 2007, 8, pp 3651-3660.
    [8] Sakuma, Y.; Taniguchi, T.; Imai, M. Pore Formation in a Binary Giant Vesicle Induced by Cone-Shaped Lipids. Biophysical J. 2010, 99, pp 472–479.
    [9] Avanti Polar Lipid. http://www.avantilipids.com (accessed March 2015).
    [10] Fowler, S.; Roush, R.; Wise, J. Concepts of Biology. http://opentextbc.ca/biology/chapter/9-1-the-structure-of-dna (accessed March 2015).
    [11] Lin, T. L. Neutron and X-Ray Small Angle Scattering; National Tsing Hua University: Taiwan, 2013.
    [12] Jeng, U. S. X-光小角度散射在軟物質研究上的應用. 物理雙月刊 2004, 26, pp 416-424.

    [13] Jean, D.; Alain, G. X-ray and Neutron Reflectivity; Springer-Verlag Berlin Heidelberg: USA, 2009.
    [14] X-ray Reflectivity. http://physics.valpo.edu/staff/arichter/XRR.htm (accessed May 2015).
    [15] Wu, J. C. Studies on the DNA Adsorption by the Mixed Lipid Monolayer at the Air-Liquid Interface Using X-ray/Neutron Reflectivity, BAM and AFM. Ph. D. dissertation, National Tsing Hua University, Hsinchu, Taiwan, 2006.
    [16] Eeman, M.; Deleu, M. From biological membranes to biomimetic model membranes. Biotechnol. Agron. Soc. Environ. 2010, 14, pp 719-736.
    [17] Simple English Wikipedia. http://simple.wikipedia.org/wiki/Atomic_force_microscope#cite_note-1 (accessed May 2015).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE