簡易檢索 / 詳目顯示

研究生: 黃國松
Huang, Kuo-Sung
論文名稱: 由似噪音脈衝產生超連續光譜應用於光學斷層掃描之研究
Supercontinuum Generated by Noise-like Pulse for Ultrahigh-Resolution Optical Coherence Tomography
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 謝文峰
Hsieh Wen-Feng
李晁逵
Chao-Kuei, Lee
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 77
中文關鍵詞: 光纖雷射似噪脈衝超連續光源光學斷層掃描
外文關鍵詞: Fiber Laser, Noise-like Pulse, Supercontinuum Light Source, Optical Coherence Tomography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中我們設計並建立了一個高解析度的時域光學斷層掃描系統。光源為似噪脈衝在單模光纖中產生的超連續光譜。似噪脈衝有著穩定的重複率,在次奈秒的波包中有著快且速隨機變化的結構。其寬頻與經過光纖傳遞不易變形的特性可以有利於產生超連續光譜。此光源的中心波長為1060奈米,產生的超連續頻譜半高寬可以大於超過320奈米,使其在光學斷層掃描中有潛力達到小於1.6微米的解析度。我們將本光源利用於包含縱、橫向掃描的自由空間麥可森干涉儀估計光學斷層掃描的解析度。實驗得到的點擴散函數與重建圖顯示本光源之縱向解析度可以小於5微米。


    In this thesis, an efficient light source for high resolution optical coherence tomography system was designed, constructed and studied. We optimized the characteristics of a supercontinuum light source generated in optical communication single-mode fiber pumped with noise-like pulses. Such kind of pulses can propagate over a long distance in optical fibers while maintaining the packet duration to generate broadband supercontinuum. The center wavelength of the generated supercontinuum is 1060 nm and the FWHM of the output spectrum can exceed 320 nm. We set up a free space Michelson interferometer with both axial and lateral scanning schemes as a prototype time-domain optical coherence tomography system. The experimentally measured point spread function indicates an axial resolution of <5 μm as compared to a theoretical resolution of <1.6 μm.

    中文摘要 I Abstract II 致謝 III Table of Contents V List of Figures VII List of Tables X Chapter 1 Introduction 1 Chapter 2 Background 7 2.1 Mode-locking 7 2.1.1. Mode-locking theory 8 2.1.2. Active and passive mode-locking 10 2.1.3. Nonlinear polarization evolution 13 2.2 Fiber amplifier 14 2.2.1. Rare-earth doped fiber 15 2.2.2. Ytterbium (Yb) doped fiber 16 2.3 Nonlinearities in optical fibers 17 2.3.1. Self-phase modulation 17 2.3.2. Stimulated Raman scattering 19 2.4 Optical coherence tomography 21 2.4.1. Interferometry and axial resolution 22 2.4.2. Lateral resolution 24 2.4.3. Time-domain OCT (TD-OCT) 26 2.4.4. Fourier-domain OCT (FD-OCT) 27 Chapter 3 Experimental Methods and Setup 30 3.1 Light Source 30 3.1.1. Nonlinear polarization evolution laser source 30 3.1.2. Time stretching technique 36 3.1.3. Supercomtinuum generation 38 3.2 Interferometer 39 3.2.1. Free space Michelson interferometer 39 3.2.2. A scan schemes 41 3.2.3. Lateral scan method 45 3.3 All normal dispersion fiber laser 46 3.4 Experimental setup 47 3.4.1. Light source setup 47 3.4.2. Optical coherence tomography setup 50 Chapter 4 Experimental Result and Discussion 52 4.1 Dispersion mapped NPE fiber laser characteristics 52 4.2 Supercontinnum generation results 59 4.2.1. Different SMFs 59 4.2.2. Bandwidth 62 4.2.3. Point spread function 64 4.3 OCT trace 67 4.3.1. A scan range test 67 4.3.2. Single scan line 71 4.3.3. OCT trace 73 4.4 All normal dispersion NPE laser characteristics 76 Chapter 5 Conclusions 80 Chapter 6 Future Works 81 References 82

    [1] A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, "Measurement of Intraocular Distances by Backscattering Spectral Interferometry," Optics Communications, vol. 117, pp. 43-48, May 15 1995.
    [2] A. F. Fercher, "Optical coherence tomography - development, principles, applications," Zeitschrift Fur Medizinische Physik, vol. 20, pp. 251-276, 2010.
    [3] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, et al., "Optical Coherence Tomography," Science, vol. 254, pp. 1178-1181, Nov 22 1991.
    [4] F. Kuo. (2011). A glimpse (or primer) of the Plenary Session — “Medical Imaging Using Optical Coherence Tomography”. Available: http://blog.cleoconference.org/2011/01/a-glimpse-or-primer-of-the-plenary-session-medical-imaging-using-optical-coherence-tomography/
    [5] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Reports on Progress in Physics, vol. 66, pp. 239-303, Feb 2003.
    [6] J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of Modern Physics, vol. 78, pp. 1135-1184, Oct-Dec 2006.
    [7] J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, et al., "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," Journal of the Optical Society of America B, vol. 19, pp. 765-771, 2002/04/01 2002.
    [8] J. M. Stone and J. C. Knight, "Visibly "white" light generation in uniformphotonic crystal fiber using a microchip laser," Optics Express, vol. 16, pp. 2670-2675, 2008/02/18 2008.
    [9] A. Kudlinski, G. Bouwmans, M. Douay, M. Taki, and A. Mussot, "Dispersion-Engineered Photonic Crystal Fibers for CW-Pumped Supercontinuum Sources," Journal of Lightwave Technology, vol. 27, pp. 1556-1564, Jun 1 2009.
    [10] S. Martin-Lopez, P. Corredera, and M. Gonzalez-Herraez, "Cavity dispersion management in continuous-wave supercontinuum generation," Optics Express, vol. 17, pp. 12785-12793, Jul 20 2009.
    [11] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Optics Letters, vol. 22, pp. 799-801, 1997/06/01 1997.
    [12] J. C. Hernandez-Garcia, O. Pottiez, and J. M. Estudillo-Ayala, "Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser," Laser Physics, vol. 22, pp. 221-226, 2012/01/01 2012.
    [13] J. WILLIS E. LAMB, "Theory of an Optical Maser," PHYSICAL REVIEW, vol. 134, 1964.
    [14] S. D. Yang, "Ultrafast Optics (lecture note)," 2013.
    [15] S. Teich, Fundamental of Photonics, 2nd edition ed.: John Wiley & Sons, 1991.
    [16] A. M. Weiner, Ultrafast Optics: John Wiley & Sons, 2009.
    [17] E. Desurvire, J. L. Zyskind, and C. R. Giles, "Design Optimization for Efficient Erbium-Doped Fiber Amplifiers," Journal of Lightwave Technology, vol. 8, pp. 1730-1741, Nov 1990.
    [18] L. E. Hargrove, R. L. Fork, and M. A. Pollack, "Locking of He-Ne Laser Modes Induced by Synchronous Intracavity Modulation ( Diffraction by Phonons in Crystals E )," Applied Physics Letters, vol. 5, pp. 4-&, 1964.
    [19] V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Self-Starting Passively Mode-Locked Fiber Ring Soliton Laser Exploiting Nonlinear Polarization Rotation," Electronics Letters, vol. 28, pp. 1391-1393, Jul 16 1992.
    [20] D. U. Noske, N. Pandit, and J. R. Taylor, "Source of Spectral and Temporal Instability in Soliton Fiber Lasers," Optics Letters, vol. 17, pp. 1515-1517, Nov 1 1992.
    [21] K. Tamura, H. A. Haus, and E. P. Ippen, "Self-Starting Additive Pulse Mode-Locked Erbium Fiber Ring Laser," Electronics Letters, vol. 28, pp. 2226-2228, Nov 19 1992.
    [22] K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-Fs Pulse Generation from a Stretched-Pulse Mode-Locked All-Fiber Ring Laser," Optics Letters, vol. 18, pp. 1080-1082, Jul 1 1993.
    [23] C. J. Koester and E. Snitzer, "Amplification in a Fiber Laser," Applied Optics, vol. 3, pp. 1182-1186, 1964/10/01 1964.
    [24] L. R. R. J. Mears, I. M. Jauncey, and D. N.Payne, "Low-noise erbium-doped fibre amplifier operating at 1.54 μm," Electron. Lett, vol. vol. 23, pp. 1026-1028, 1987.
    [25] M. L. Dakss and W. J. Miniscalco, "Fundamental limits on Nd3+-doped fiber amplifier performance at 1.3 μm," IEEE Photon. Technol. Lett., vol. vol. 2, pp. 650-652, 1990.
    [26] M. Øbro, B. Pedersen, A. Bjarklev, and J. H. Povlsen, "Highly improved fibre amplifier for operation around 1300 nm," Electron. Lett., vol. 27, p. 470, 1991.
    [27] Y. Ohishi, T. Kanamori, T. Nishi, and S. Takahashi, "A high gain, high output saturation power Pr3+-doped fluoride fiber amplifier operating at 1.3 μm," EEE Photon. Technol. Lett., vol. 3, pp. 715-717, 1991.
    [28] RP Photonics. Available: http://www.rp-photonics.com/index.html?s=logo
    [29] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, pp. 576-581, Jan 15 2002.
    [30] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," Ieee Journal of Quantum Electronics, vol. 33, pp. 1049-1056, Jul 1997.
    [31] F. Shimizu, "Frequency broadening in liquids by a short light pulse," Phys. Rev. Lett., vol. 19, pp. 1067-1100, 1967.
    [32] S. A. Planas, N. L. Mansur, C. H. Cruz, and H. L. Fragnito, "Spectral narrowing in the propagation of chirped pulses in single-mode fibers," Opt Lett, vol. 18, pp. 699-701, May 1 1993.
    [33] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, pp. 501-502, Jan-Jun 1928.
    [34] R. H. Stolen, A. R. Tynes, and E. P. Ippen, "Raman Oscillation in Glass Optical Waveguide," Applied Physics Letters, vol. 20, pp. 62-&, 1972.
    [35] A. F. Fercher, C. Hitzenberger, and M. Juchem, "Measurement of Intraocular Optical Distances Using Partially Coherent Laser Light," Journal of Modern Optics, vol. 38, pp. 1327-1333, 1991/07/01 1991.
    [36] A. F. Fercher, C. K. Hitzenberger, W. Drexler, G. Kamp, and H. Sattmann, "In-Vivo Optical Coherence Tomography," American Journal of Ophthalmology, vol. 116, pp. 113-115, Jul 15 1993.
    [37] E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, C. P. Lin, J. S. Schuman, et al., "In-Vivo Retinal Imaging by Optical Coherence Tomography," Optics Letters, vol. 18, pp. 1864-1866, Nov 1 1993.
    [38] S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, "Optical coherence tomography using a frequency-tunable optical source," Optics Letters, vol. 22, pp. 340-342, Mar 1 1997.
    [39] G. Hausler and M. W. Lindner, ""Coherence Radar'' and "Spectral Radar''-New Tools for Dermatological Diagnosis," Journal of Biomedical Optics, vol. 3, pp. 21-31, Jan 1998.
    [40] J. A. Izatt and M. A. Choma, "Theory of Optical Coherence Tomography," in Optical Coherence Tomographt, Technology and Applications, W. Drexler and J. G. Fujimoto, Eds., ed: Spriger, 2008.
    [41] L. A. Vazquez-Zuniga and Y. Jeong, "Super-Broadband Noise-Like Pulse Erbium-Doped Fiber Ring Laser With a Highly Nonlinear Fiber for Raman Gain Enhancement," Ieee Photonics Technology Letters, vol. 24, pp. 1549-1551, Sep 1 2012.
    [42] O. Pottiez, R. Grajales-Coutino, B. Ibarra-Escamilla, E. A. Kuzin, and J. C. Hernandez-Garcia, "Adjustable noiselike pulses from a figure-eight fiber laser," Applied Optics, vol. 50, pp. E24-E31, Sep 1 2011.
    [43] S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers," Optics Express, vol. 17, pp. 20707-20713, Nov 9 2009.
    [44] L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Optics Express, vol. 15, pp. 2145-2150, Mar 5 2007.
    [45] S. M. Kobtsev and S. V. Smirnov, "Fiber lasers mode-locked due to nonlinear polarization evolution: Golden mean of cavity length," Laser Physics, vol. 21, pp. 272-276, Feb 2011.
    [46] G. P. Agrawal, Nonlinear Fiber Optics: Elsevier, Academic, 2013.
    [47] S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Optics Express, vol. 14, pp. 11575-11584, Nov 27 2006.
    [48] M. H. F. a. J. M. D. J. C. Travers, "Nonlinear fibre optics overview," in Supercontinuum Generation in Optical Fibers, J. M. D. a. J. R. Taylor, Ed., ed, 2010, pp. 32-51.
    [49] K. Rottwitt and J. H. Povlsen, "Analyzing the fundamental properties of Raman amplification in optical fibers," Journal of Lightwave Technology, vol. 23, pp. 3597-3605, Nov 2005
    [50] Spec sheet from ThorLabs. Available: http://www.thorlabs.hk/thorcat/2100/DET410-SpecSheet.pdf
    [51] A. K. Zaytsev, C. H. Lin, Y. J. You, F. H. Tsai, C. L. Wang, and C. L. Pan, "A controllable noise-like operation regime in a Yb-doped dispersion-mapped fiber ring laser," Laser Physics Letters, vol. 10, Apr 2013.
    [52] S. M. J. Kelly, "Characteristic sideband instability of periodically amplified average soliton," Electronics Letters, vol. 28, pp. 806-807, 1992.
    [53] N. J. Smith, K. J. Blow, and I. Andonovic, "Sideband generation through perturbations to the average soliton model," Lightwave Technology, Journal of, vol. 10, pp. 1329-1333, 1992.
    [54] J. P. Gordon, "Dispersive perturbations of solitons of the nonlinear Schrödinger equation," Journal of the Optical Society of America B, vol. 9, pp. 91-97, 1992/01/01 1992.
    [55] K. Rottwitt and J. H. Povlsen, "Analyzing the fundamental properties of Raman amplification in optical fibers," Lightwave Technology, Journal of, vol. 23, pp. 3597-3605, 2005.
    [56] K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," Quantum Electronics, IEEE Journal of, vol. 25, pp. 2665-2673, 1989.
    [57] B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, et al., "Ultrahigh speed 1050nm swept source / Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second," Optics Express, vol. 18, pp. 20029-20048, 2010/09/13 2010.
    [58] M. Choma, M. Sarunic, C. Yang, and J. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Optics Express, vol. 11, pp. 2183-2189, 2003/09/08 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE