簡易檢索 / 詳目顯示

研究生: 林子閔
Lin, Zi-Min
論文名稱: 函數體上橢圓曲線之有理扭點的計算
Computation on Rational Torsions of Elliptic Curves over Function Fields
指導教授: 魏福村
Wei, Fu-Tsun
口試委員: 張介玉
Chang, Chieh-Yu
洪斌哲
Hung, Pin-Chi
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 29
中文關鍵詞: 數論代數幾何橢圓曲線函數體複分析
外文關鍵詞: Number theory, Algebraic geometry, Elliptic curve, Function field, Complex analysis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,首先討論了函數體上橢圓曲線有理扭點的整數性。之後加入了類似於Mazur-Ogg的上界,我們整合出計算在函數體上橢圓曲線有理扭點的演算法。


    In this thesis, we first discuss about the integrality of the rational torsion points of elliptic curves over function fields. Together with an analogue of the Mazur-Ogg's bound, we derive an algorithm to compute the rational torsion points of elliptic curves over function fields.

    Content Computation on Rational Torsions of Elliptic Curves over Function Fields...............................5 Introduction.......................................5 Preliminary........................................7 Integral Property about the Non-p-torsion points...8 Division Polynomial................................12 Bound of the order of the torsion points...........15 Algorithm..........................................19 Appendix...........................................21 A. Proof of Theorem 4.4............................21 B. Computational data..............................26 Appendix. Bibliography.............................29

    [1]B.Mazur.Modular curves and the Eisenstein idealInst. Hautes Etudes Sci. Publ. Math. 47, 33–186(1978/1977)
    [2] B. Mazur.Rational isogenies of prime degree (with an appendix by D. Goldfeld)Invent. Math. 44(2),129–162 (1978)
    [3] Kenneth, H. Rosen, Ph.D.Elliptic Curve Number Theory and Cryptography Second Edition, 2008.
    [4] Joseph H. Silverman John T. TateRational Points on Elliptic Curves Second Edition
    [5] Joseph H. SilvermanThe Arithmetic of Elliptic Curves Second Edition
    [6] David A. Cox, Walter R. ParryTorsion in Elliptic Curve overk(t), Compositio Mathematica Vol. 41Fasc. 3 (1980) 337-354
    [7] Andreas Schweizer.On thepe-Torsion of Elliptic Curves and Elliptic Surfaces in Characteristicp,Transactions of the American Mathematical Society. Vol. 357 No. 3 1047–1059
    [8] J. F. VolochExplicitp-Descent for Elliptic Curves in Characteristicp, Compositio Mathematica tome74 No. 3 (1990) 247-258[9] [9] H. HasseBeweis des Analogons der Riemannschen Vermutung für die, Artinschen und F.K.Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fallen. Nachr. Ges. Wiss. Göttingen,Math.-Phys. K. 253–262 (1933)
    [10] A. WeilSur les courbes algébriques et les variétés qui s’en déduisent.Actualités Sci. Ind., no. 1041 =Publ. Inst. Math. Univ. Strasbourg 7(1945). Hermann et Cie., Paris, 1948
    [11] https://math.mit.edu/classes/18.783/2015/LectureNotes5
    [12] https://math.mit.edu/classes/18.783/2015/LectureNotes6

    QR CODE