研究生: |
康倫瑋 |
---|---|
論文名稱: |
滾軋鋁合金(X2095)板材之疲勞裂縫成長模擬 |
指導教授: | 蔣長榮 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 疲勞 、裂縫成長 、模擬 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文模擬一具有邊緣初始裂縫之異向性平板試片受垂直於裂縫方向之疲勞負載所造成之裂縫延伸情況。
考慮裂縫於穩定成長下之實際延伸情形,每一週次負載使裂縫沿一定方向延伸。模擬中裂縫依循所假設之方向選取機率規則隨機成長,而裂縫成長速率則簡化由該成長方向裂縫之第Ⅰ型應力強度因子決定,由初始裂縫成長至達到臨界不穩定成長之裂縫。
其中,決定應力強度因子與裂縫成長量關係之式由文獻所推導而來,可充份地描述裂縫穩定成長之特性,對於該式之材料係數,本文定義一誤差函數以試誤法由實驗數據求取,直接反應實際的材料疲勞性質。另一方面,在裂縫成長方向的選取規則上,本文採用較文獻上更為精緻的選取函數,提昇了模擬的準確性。
由本模擬模型之建立,該型態幾何與負載下之疲勞裂縫問題可經由數值計算模擬其發展,由各組參數化條件進行模擬的結果可得參數個別對於疲勞週次之影響。另一方面,滾軋材料於方向上的抗疲勞差異性在本文中亦被模擬比較,可提供設計時選擇板材方向之參考。
本文主要以增加模擬的精確性為目標,使得模擬方法在破裂問題上增加其應用價值。
1. Paris, P.C., Gomez, M. P., and Anderson, W. P., “A Rational Analytic Theory of Fatigue,” The Trend in Engineering, Vol. 13, pp. 9-14, 1961.
2. Paris, P. C. and Erdogan, F., “A Critical Analysis of Crack Propagation Law,” Journal of Basic Engineering, Vol. 85, pp. 528-534, 1963.
3. Schijve, J. and Broke, D., “The Influence of the Mean Stress on the Propagation of Fatigue Cracks in Aluminum Alloy Sheets,” Nat. Aerospace TR-M-21111, 1963.
4. Walker, E. K., “Effects of Environments and Complex Load History on Fatigue Life,” ASME STM 462, pp.1-14, 1970.
5. Foreman, R. G.., Keary, V. E., and Engle, R. M., ”Numerical Analysis of Crack Propagation in Cyclic-Loaded Structures,” Journal of Basic Engineering, Vol. 89, pp. 459-464, 1967.
6. Donahue, R. J., Clark, H. M., Atanmo, P., Kumble, R., and McEvily, A. J., “Crack Opening Displacement and the Rate of Fatigue Crack Growth,” International Journal of Fracture Mechanics, Vol. 8, pp. 209-219, 1972.
7. McEvily, A. J., “On Closure in Fatigue Crack Growth,” ASTM STP 982, American Society for Testing and Materials, Philadelphia, pp. 35-43, 1988.
8. Chiang, C. R., “A Unified Theory of Fatigue and Crack Growth: A Statistical Approach,” International Journal of Fracture, Vol. 53, pp. 337-342, 1992.
9. Chiang, C. R., “Numerical Simulation on Fracture Behavior of Materials,”國科會專題研究計劃成果報告 NSC 86-2212-E007-006.
10. 黃郁青, “裂縫的疲勞成長電腦模擬”, 碩士論文, 國立清華大學, 1999.
11. 王琮瑋, ”疊層複合材料中疲勞裂縫成長之電腦模擬”, 碩士論文, 國立清華大學, 2000.
12. Chiang, C. R., “Kinked Crack in An Anisotropic Material,” Engineering Fracture Mechanics, Vol. 39, No. 5, pp. 927-930, 1991.
13. Buczek, M. B. and Herakovich, C. T., “A Normal Stress Criterion for Crack Extension Direction in Orthotropic Composite Materials,” Journal of Composite Materials, Vol. 19, pp.544-553, 1985.
14. Anderson, T. L., Fracture Mechanics Fundamentals and Applications, CRC Press, Inc., 1995.
15. Delale, F. and Erdogan, F., “The Problem of Internal and Edge Cracks in An Orthotropic Strip,” Journal of Applied Mechanics:Transactions of The ASME, Vol. 44, Series E, No.2,pp.237-242,1977.
16. Chen, D. L., Chaturvedi, M. C., Goel, N., and Richards, N. L., “Fatigue Crack Growth Behavior of X2095 Al-Li Alloy,” International Journal of Fatigue, Vol. 21, pp. 1079-1086, 1999.
17. Blankenship, C. P., and Starke, E. A.,”Improved Toughness in Al-Li-Cu-Mg-Ag-Zr Alloy X2095,” Scripta Metallurgica et Materialia, Vol. 26, pp. 1719-1722, 1992.