簡易檢索 / 詳目顯示

研究生: 黃瑋珣
Huang, Wei-Hsun
論文名稱: 氮化鎵高電子移導率電晶體模型建立與被動混頻器設計
GaN HEMT Modeling and Passive Mixer Design
指導教授: 徐碩鴻
Hsu, Shou-Hung
口試委員: 孟慶宗
黃智方
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 57
中文關鍵詞: 小訊號模型大訊號模型被動混頻器氮化鎵高電子移導率電晶體
外文關鍵詞: Small-signal model, Large-signal model, Passive Mixer, GaN HEMT
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The thesis includes two parts, the first part is to build the device model for AlGaN/GaN HEMTs. The device model includes small-signal model and large-signal model. The second part is about passive mixers design. We design both fundamental and sub-harmonic passive mixers.
    In the first part, we use the cold-FET measurement to extract the parasitic parameters of small-signal model. After extracting parasitic parameters, we de-embed those parasitic components to obtain the intrinsic HEMT characteristics. Finally, with the Y-parameters and mathematical calculations, we can obtain the intrinsic parameters. We utilized the Angelov model for current model in this thesis. With DC measurements, the Angelov current model parameters can be obtained by fitting. Finally, we use ADS simulation software to verify the extracted results, the measured and model-predicted device I-V curves and S-parameters have been compared. Good agreements between measurement and simulation are demonstrated for this device, which confirm the validity of this model.
    In chapter 5, a broadband highly linear Ku band passive resistive mixer is presented based on the model described in the chapter 2 and 3. The design is based on a 2×100 μm AlGaN/GaN HEMT in a single-ended circuit topology. The mixer has an IF frequency of 1 GHz with a minimum conversion loss of 7.9 dB at 13 GHz. The P1dB and IIP3 of the mixer are 13 and 22 dBm.
    In chapter 6, a sub-harmonic down-conversion passive mixer is designed and fabricated in a 0.15 μm AlGaAs/InGaAs/GaAs pHEMT technology. The mixer exhibits a conversion loss as low as 8.8-11.8 dB over a wide RF frequency range of 11-21 GHz. The P1dB and IIP3 of the mixer are 3 and 6 dBm, respectively.


    本論文可分成兩部分討論,第一部分是氮化鎵高電子移導率電晶體模型的建立,包含小訊號及大訊號模型,第二部分提出了兩種不同的被動混頻器架構,包含基頻混頻器與次諧波混頻器。
    在第一部分首先我們利用cold-FET量測來萃取出外部寄生的電阻和電感值,再利用Y參數將外部寄生的參數扣除掉之後,可以計算出內部等校電路的元件值。在本論文中採用Angelov的模型做為我們的電流模型,此模型中的各個參數可利用擬合的方式獲取,另外將內部元件值隨電壓變化的關係也用方程式擬合,最後在ADS中建立出完整的電晶體等效模型,並比較量測與模擬的直流特性與S參數。
    在第5章中,我們提出一種寬頻高線性度的被動混頻器,此混頻器是利用第2和3章建立出的電晶體模型來設計,我們所採用的元件大小是2×100 μm,IF頻率固定在1 GHz,可得到頻率操作在11-18 GHz,轉換損耗最小為7.9 dB的被動混頻器,此混頻器的P1dB和IIP3為13和22 dBm。
    在第六章中,我們提出另一種被動混頻器架構,此混頻器是利用穩懋半導體提供的0.15 μm pHEMT 元件設計並製作,此混頻器操作在11-21 GHz,擁有轉換損耗8.8-11.8 dB,其P1dB和IIP3為3和6 dBm。

    Acknowledgement ii Abstract iii 摘要 iv Contents v List of Figures vii List of Tables ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 2 Chapter 2 Establishment of GaN HEMT Small-Signal Model 4 2.1 Introduction 4 2.2 Small-Signal Equivalent Circuit 5 2.3 Extraction of Extrinsic Parameters 7 2.4 Extraction of Intrinsic Parameters 9 2.4.1 De-embedded Procedures 9 2.4.2 Y-Parameter Analysis 11 2.4.3 Parameter Extraction Method 14 2.5 Summary 17 Chapter 3 Establishment of GaN HEMT Large-Signal Model 18 3.1 Introduction 18 3.2 Introduction of Large-Signal Model 18 3.3 The Extracting Methods and Procedures 20 3.3.1 Drain Current Modeling 20 3.3.2 Capacitance and Resistance Modeling 22 3.4 Simulation Results and Discussions 23 3.5 Summary 24 Chapter 4 Basic Concepts of Mixers 25 4.1 Background 25 4.1.1 Fundamental Mixers 25 4.1.2 Sub-harmonic Mixers 26 4.2 LO Signal Self-Mixing and DC-offset 27 4.3 Important Parameters of a Mixer 28 4.3.1 Conversion loss or gain 29 4.3.2 Noise Figure 29 4.3.3 Linearity 31 4.3.4 Isolation 36 4.4 Summary 37 Chapter 5 A Single-Ended Resistive AlGaN/GaN HEMT Mixer 38 5.1 Introduction 38 5.2 Circuit Design 38 5.3 Simulation Results 39 5.4 Summary and Discussion 42 Chapter 6 Design of The Mixer in GaAs PHEMT 44 6.1 A 11-21 GHz Sub-harmonic Passive Mixer 44 6.2 Circuit Topology 44 6.3 Circuit Analysis 45 6.4 Simulation and Measurement Results 48 6.5 Summary and Discussion 52 Chapter 7 Conclusion and Future Work 54 References 55

    [1]H. Zirath, “A subharmonically pumped resistive dual-HEMT-mixer,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 875-878, 1991.
    [2]H. Zirath, I. Angelov, and N. Rorsman, “A millimeter wave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 599-602, 1992.
    [3]K. S. Ang, A. H. Bare, S. Nam, and I. D. Robertson, “A millimeter wave monolithic subharmonically pumped resistive mixer,” Proc. Asia Pacific Microwave Conf., pp.222-225, 1999.
    [4]K. S. Ang, M. Chongcheawchamman, D. Kpogla, P. R. Young, I. D. Robertson, D. S. Kim, M. C. Ju, and H. C. Seo, “Monolithic Ka-band even-harmonic quadrature resistive mixer for direct conversion receivers,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp. Dig. Papers, pp. 169-172, 2001.
    [5]M. F. Lei, P. S. Wu, T. W. Huang, and H. Wang, “Design and analysis of miniature W-band MMIC subharmonically pumped resistive mixer,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 235-238, 2004.
    [6]P. C. Yeh, W. C. Liu, and H. K. Chiou, “Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element high-pass/band-pass balun,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 62-64, Feb. 2005.
    [7]Y. J. Hwang, H. Wang, and T. H. Chu, “A W-band subharmonically pumped monolithic GaAs-based HEMT gate mixer,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 14, no. 7, pp. 313-315, Jul. 2004.
    [8]H. Zirath, I. Angelov, N. Rorsman, C. Kalsson, and M. Sironen, “A millimeter-wave AlInAs-GaInAs HFET-based subharmonically pumped mixer,” Proc. Eur. Microwave Conf., pp. 294-298, 1995
    [9]J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “A 77 GHz SiGe subharmonic balanced mixer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2167-2173, Nov. 2005.
    [10]R. Ludwig and P. Bretchko, RF Circuit Design Theory and Applications. Prentice Hall; Har/Cdr edition (Nov. 30, 1999)
    [11]J. Park, C.-Ho Lee, B.-S. Kim, and J, Laskar, “Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4372-4380, Dec. 2006.
    [12]C. D. Hull, J. L. Tham, and R. R. Chu, “A direct-conversion receiver for 900 MHz (ISM band) spread-spectrum digital cordless telephone,” IEEE Journal of Solid-State Circuits, vol. 31, no. 12, pp.1966-1963, Dec. 1996.
    [13]A. Jannesari and M. Kamarei, “Design of a low voltage low-phase-noise complementary CMOS VCO,” IEEE ISICIR, pp.426-429, Sep. 2007.
    [14]K. L. Fong and R. G. Meyer, “Monolithic RF active mixer design,” IEEE Trans. Circuits Syst. II, vol. 46, no. 3, pp. 231-239, Mar. 1999.
    [15]M. J. Gingell, “Single sideband modulation using sequence asymmetric polyphase networks,” Electrical Commun., vol. 48, no. 1-2, pp. 21-25, 1973.
    [16]G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 36, no. 7, pp.1151-1159, Jul. 1988.
    [17]M. Berroth and R. Bosch, “Broad-band equivalent circuit,” IEEE Trans. Microw. Theory Tech., vol. 38, no. 7, pp. 891-895, Jul. 1990.
    [18]G. Chen, V. Kumar, R. S. Schwindt, and I. Adesida, “ A low gate bias model extraction technique for AlGaN/GaN HEMTs,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2949-2953, Jul. 2006.
    [19]A. Jarndal and G. Kompa, “A new small-signal modeling approach applied to GaN devices,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3440-3448, Nov. 2005.
    [20]I. Angelov, H. Zirath, N. Rorsmann, “A new empirical nonlinear model for HEMT and MESFET devices,” IEEE Trans. Microw. Theory Tech., vol. 40, no. 12, pp. 2258-2266, Dec. 1992.
    [21]I. Angelov, L. Bengtsson, and M. Garcia, “Extensions of the Chalmers nonlinear HEMT and MESFET model,” IEEE Trans. Microw. Theory Tech., vol. 44, no. 10, pp. 1664-1674, Oct. 1996.
    [22]C. Fazi and P. G. Neudeck, “Wide dynamic range RF mixers using wide-bandgap semiconductors,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 1, pp. 49-51, Jun. 1997.
    [23]S. Maas, “A GaAs MESFET mixer with very low intermodulation,” IEEE Trans. Microw. Theory Tech., vol. MTT-35, no. 4, pp. 425-429, Apr. 1987.
    [24]T. Ellis, “A modified feed-forward technique for mixer linearization,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 3, pp. 1423-1426, 1998.
    [25]C. Au-Yeung and K. Cheng, “CMOS mixer linearization by the low-frequency signal injection method,” IEEE MTT-S Int. Microw. Symp. Dig., vol. 1, pp. 95-98, 2003.
    [26]M. Chongcheawchamnan, C. Ng, and I. Robertson, “Difference frequency injection linearization technique for mixer systems,” Electron. Lett., vol. 38, no. 23, pp. 1450-1452, 2002.
    [27]Y. Kim and S. Lee, “Linearized mixer using predistortion technique,” IEEE Microw. Wireless Compon. Lett., vol. 12, no. 6, pp. 204-205, Jun. 2002.
    [28]W. Chan and G. Bock, “Linearization of mixers using predistortion and envelope signal injection,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 100-102, Mar. 2004.
    [29]M. Sudow, K. Andersson, M. Fagerlind, M. Thorsell, P.-A. Nilsson, and N. Rorsman, “A single-ended resistive X-band AlGaN/GaN HEMT MMIC mixer,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 10, pp. 2201-2206, Oct. 2008.
    [30]V. S. Kaper, R. M. Thompson, T. R. Prunty, and J. R. Shealy, “Signal generation, control, and frequency conversion AlGaN/GaN HEMT MMICs,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 1, pp. 55-65, Jan. 2005.
    [31]V. D. Giacomo, N. Thouvenin, C. Gaquiere, A. Santarelli, and F. Filicori, “Modelling and design of a wideband 6-18 GHz GaN Resistive Mixer,” IEEE EuMIC, pp. 459-462, Oct. 2009.
    [32]M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE Journal of Solid-State Circuits, vol. 41, no. 10, pp. 2257-2264, Oct. 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE