簡易檢索 / 詳目顯示

研究生: 蔡昀孜
Tsai, Yun-Tzu
論文名稱: 離子態水溶液次冷態沸騰的探討
Subcooled Pool Boiling of Electrolyte Solutions
指導教授: 潘欽
Pan, Chin
口試委員: 王啟川
Wang, Chi-Chuan
陳紹文
Chen, Shao-Wen
傅本然
Fu, Ben-Ran
學位類別: 碩士
Master
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 62
中文關鍵詞: 池沸騰離子態水溶液次冷態氣泡併合
外文關鍵詞: pool boiling, electrolyte solution, subcooled boiling, bubble coalescence
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗採用線徑為0.3mm,純度為99.95%之白金線作為主要加熱體,利用直流電源供應器提供的電功率轉換為熱功率,受限於窄線徑,針對白金溫度與電阻高度相關的特性,經由事前油浴實驗測量其電阻值及矽油溫度回推白金熱阻絲的壁溫,同時為避免實驗電極和熱阻絲表面與離子態水溶液產生化學變化,在電極外披覆熱縮套管並以兩款電子絕緣膠隔絕其相互接觸。每次實驗以內層不鏽鋼製、外層陶瓷鍍膜的水槽承裝六升之溶液並以下方均溫型PID加熱板調控至所需之次冷度,透過水槽內置的四支T-type熱電偶與MX-100數據擷取裝置記錄池水溫度,且利用水槽前方可視化視窗進行高速攝影機影像拍攝、做圖譜比對。
    經由影像觀察、壁溫變化及熱通率計算後,本研究實驗結果可以發現:就氣泡尺寸而言,氯化鈉水溶液較去離子水擁有較小尺寸的氣泡,且受到周圍離子水合力及靜電力影響,氯化鈉水溶液中的氣泡即使相觸易因相斥而不會產生併合現象;而在氣泡生成速率方面,氯化鈉水溶液與去離子水相似,隨著熱通率上升增強其蒸汽產生率,氣泡的生成也隨之加速。去離子水由於並無離子效應發生,在高熱通率時,蒸氣生成速率高於氣泡脫離速率將使鄰近氣泡合併,進一步在熱表面形成氣膜覆蓋,終致白金熱阻絲燒紅,即達臨界熱通率;相反的,氯化鈉水溶液中氣泡不易併合的情況將使熱表面可以與周圍較冷的工作流體接觸,不斷生成、衝出的氣泡也能帶走熱量,達到提高熱傳的效果。


    In this experiment, a platinum wire with a diameter of 0.3 mm and a purity of 99.95% is used as the test section, and the electric power supplied by the DC power supply is converted into heat flux. Through the oil bath test beforehand, the highly correlation between the platinum temperature and the resistance is used to predict the wall temperature of the platinum wire, which is limited by the narrow wire diameter. In order to avoid the surface changes of the experimental electrodes and the wire in electrolyte solutions, the electrodes are covered with the heat-shrink tubes and two electronic insulating glues are also used to separate the test section from electrolyte solutions preventing electrochemical reaction. The stainless steel tanks with ceramic coating are filled with six liters of solution and the required subcooling are adjusted by PID hot plate. Four T-type thermocouples in the tank are used to measure and MX-100 data acquisition system records the pool temperature and voltage.
    Through image comparison, we can find that the bubbles in sodium chloride solution are smaller than in deionized water. With surrounding ion hydration force and Coulomb electrical force, the bubbles in the sodium chloride solution do not combine, even they are touched with each other will get repelled. In terms of bubble generation rate, the sodium chloride solution is similar to deionized water, and vapor generation is enhanced when the heat flux increases. Because there is no ion effect in deionized water, at high heat flux, the bubble generation rate is faster than the bubble detachment rate, which will cause adjacent bubbles to merge, forming a vapor film cover the heating wire, and finally the platinum wire will burn. On the contrary, the bubbles in the sodium chloride solution are not easy to combine, so that the hot surface can contact with the colder working fluid and the continuously generated and rushed away bubbles can also take heat away.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 符號說明 x 第一章 緒論 1 1-1 前言 1 1-2 池沸騰簡介 2 1-3 研究動機 3 1-4 研究目標 5 1-5 論文架構 5 第二章 文獻回顧 7 2-1 相異熱表面設計之池沸騰實驗 7 2-2 相異工作流體之池沸騰實驗 8 2-3 氣泡併合和氣泡脫離 9 第三章 實驗系統架設與步驟 11 3-1 實驗主要組件 12 3-1.1 測試段 12 3-1.2 電木上蓋、實驗水缸及均溫型PID加熱板 16 3-1.3 數據擷取系統 17 3-1.4 影像擷取系統 18 3-2 實驗步驟 20 3-2.1 去離子水實驗步驟 20 3-2.2 氯化鈉水溶液實驗步驟 20 第四章 實驗數據分析 22 4-1 白金熱阻絲溫度校正 22 4-2 表面溫度計算 24 4-2.1 白金裸線表面溫度 24 4-2.2 絕緣後表面溫度計算 26 4-3 誤差估計 27 第五章 結果與討論 29 5-1 去離子水的池沸騰情形 29 5-1.1 次冷度30度 31 5-1.2 次冷度15度 35 5-1.3 近飽和態沸騰 38 5-2 氯化鈉水溶液的池沸騰情形 42 5-2.1 次冷度30度 43 5-2.2 次冷度15度 44 5-2.3 近飽和態沸騰 46 5-3 工作流體綜合比較 50 5-4.1 沸騰曲線 50 5-4.2 氣泡併合討論 52 第六章 結論與建議 58 6-1 結論 58 6-2 未來研究建議 59 參考文獻 60

    [1] B. Fakhim, M. Behnia, S.W. Armfield, N. Srinarayana, "Cooling solutions in an operational data centre: A case study", Applied Thermal Engineering, 31 (14),2011, 2279-2291.
    [2] N. Lamaison, J. Braz Marcinichen, J. Richard Thome, "Two-Phase Flow Control of Electronics Cooling With Pseudo-CPUs in Parallel Flow Circuits: Dynamic Modeling and Experimental Evaluation", Journal of Electronic Packaging, 135 (3),2013, 030908-030908-030912.
    [3] J. Choi, W. Sano, W. Zhang, Y. Yuan, Y. Lee, D.-A. Borca-Tasciuc, "Experimental investigation on sintered porous wicks for miniature loop heat pipe applications", Experimental Thermal and Fluid Science, 51,2013, 271-278.
    [4] J.G. Leidenfrost, C.S. Wares, A tract about some qualities of common water, Carolyn SE Wares, 1964.
    [5] 潘欽, 沸騰熱傳與雙相流, 國立編譯館, 台北, 2001.
    [6] J.P. Riley, G. Skirrow, Chemical Oceanography, Academic Press, NY, 1975.
    [7] 黃子振, " 離子態水溶液及去離子水穩態池沸騰實驗研究", 國立清華大學, 2017.
    [8] M. Zuhairi Sulaiman, M. Takamura, K. Nakahashi, T. Okawa, "Boiling Heat Transfer and Critical Heat Flux Enhancement of Upward- and Downward-Facing Heater in Nanofluids", Journal of Engineering for Gas Turbines and Power, 135 (7),2013, 072901-072901-072906.
    [9] M.M. Sarafraz, F. Hormozi, S.M. Peyghambarzadeh, "Pool boiling heat transfer to aqueous alumina nano-fluids on the plain and concentric circular micro-structured (CCM) surfaces", Experimental Thermal and Fluid Science, 72,2016, 125-139.
    [10] Y. Sun, G. Chen, S. Zhang, Y. Tang, J. Zeng, W. Yuan, "Pool boiling performance and bubble dynamics on microgrooved surfaces with reentrant cavities", Applied Thermal Engineering, 125,2017, 432-442.
    [11] S.D. Park, S.W. Lee, S. Kang, S.M. Kim, I.C. Bang, "Pool boiling CHF enhancement by graphene-oxide nanofluid under nuclear coolant chemical environments", Nuclear Engineering and Design, 252,2012, 184-191.
    [12] J. Tang, Z. Mo, L. Sun, C. Yan, "An experimental study on Microbubble Emission Boiling in a subcooled pool: Heat transfer characteristics and visualized presentation", Experimental Thermal and Fluid Science, 80,2017, 40-52.
    [13] M. Jamialahmadi, H. Müller-Steinhagen, "Pool boiling heat transfer to electrolyte solutions", Chemical Engineering and Processing: Process Intensification, 28 (2),1990, 79-88.
    [14] M. Jamialahmadi, A. Helalizadeh, H. Müller-Steinhagen, "Pool boiling heat transfer to electrolyte solutions", International Journal of Heat and Mass Transfer, 47 (4),2004, 729-742.
    [15] P.K. Weissenborn, R.J. Pugh, "Surface Tension and Bubble Coalescence Phenomena of Aqueous Solutions of Electrolytes", Langmuir, 11 (5),1995, 1422-1426.
    [16] S. Hamzekhani, M.M. Falahieh, M.R. Kamalizadeh, Z. Nazari, "Experimental study on bubble departure frequency for pool boiling of water/NaCl solutions", Heat and Mass Transfer, 51 (9),2015, 1313-1320.
    [17] S.-H. Hsu, Y.-H. Ho, M.-X. Ho, J.-C. Wang, C. Pan, "On the formation of vapor film during quenching in de-ionized water and elimination of film boiling during quenching in natural sea water", International Journal of Heat and Mass Transfer, 86,2015, 65-71.
    [18] S. Kasap, Principles of Electronic Materials and Devices, McGraw-Hill, Inc., 2006.
    [19] D.R. Lide, CRC Handbook of Chemistry and Physics, 84th Edition, CRC Press. Boca Raton, Florida, 2003.
    [20] F.P. Incropera, D.P. deWitt, T.L. Bergman, A.S. Lavine, Principles of Heat and Mass Transfer, 7 ed., John Wiley & Sons, NY, 2012.
    [21] D.P.D. Frank P. Incropera, Theodore L. Bergman, Adrienne S. Lavine, Principles of Heat and Mass Transfer, 7th Edition John Wiley & Sons, Inc., United States of America, 2012.
    [22] C.L. Henry, V.S.J. Craig, "Ion-Specific Influence of Electrolytes on Bubble Coalescence in Nonaqueous Solvents", Langmuir, 24 (15),2008, 7979-7985.
    [23] V.V. Yaminsky, S. Ohnishi, E.A. Vogler, R.G. Horn, "Stability of Aqueous Films between Bubbles. Part 1. The Effect of Speed on Bubble Coalescence in Purified Water and Simple Electrolyte Solutions", Langmuir, 26 (11),2010, 8061-8074.
    [24] K.D. Collins, "Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process", Methods, 34 (3),2004, 300-311.
    [25] V.S.J. Craig, B.W. Ninham, R.M. Pashley, "The effect of electrolytes on bubble coalescence in water", The Journal of Physical Chemistry, 97 (39),1993, 10192-10197.
    [26] V.S.J. Craig, B.W. Ninham, R.M. Pashley, "Effect of electrolytes on bubble coalescence", Nature, 364,1993, 317.
    [27] C.L. Henry, C.N. Dalton, L. Scruton, V.S.J. Craig, "Ion-Specific Coalescence of Bubbles in Mixed Electrolyte Solutions", The Journal of Physical Chemistry C, 111 (2),2007, 1015-1023.
    [28] W. Kunz, "Specific ion effects in colloidal and biological systems", Current Opinion in Colloid & Interface Science, 15 (1),2010, 34-39.
    [29] P. Creux, J. Lachaise, A. Graciaa, J.K. Beattie, "Specific Cation Effects at the Hydroxide-Charged Air/Water Interface", The Journal of Physical Chemistry C, 111 (9),2007, 3753-3755.
    [30] B.-R. Fu, Y.-H. Ho, M.-X. Ho, C. Pan, "Quenching characteristics of a continuously-heated rod in natural sea water", International Journal of Heat and Mass Transfer, 95,2016, 206-213.

    QR CODE