研究生: |
連德軒 Der-Hsien Lien |
---|---|
論文名稱: |
單層奈米碳管薄膜之蕭基二極體及閃光效應研究 A Study of Single-Walled Carbon Nanotube Films in Schottky Diode and Flash Ignition Effect |
指導教授: |
徐文光
Wen-Kuang Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 奈米碳管 、光電流 、蕭基二極體 、蕭基光電二極體 、閃光燈 |
外文關鍵詞: | carbon nanotube, photocurrent, Schottky diode, Schottky photodiode, flash |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本論文的第一部分,我們研究波長為532 nm之綠光雷射照射在碳管薄膜和金屬間接面所產生的光電流;不同於文獻中奈米碳管的光電流研究,本實驗藉由微調平台控制光照射在不同位置,發現奈米碳管所產生光電流的大小及方向,會隨著綠光雷射照位置不同而有所改變,因此我們建立了兩個模型來解釋這個現象,並試著藉由低溫下的照光實驗以及量子效率量測來驗證模型的合理性。
在第二部分中,我們研究照射閃光燈對於奈米碳管薄膜電性的影響,在本實驗中沒有觀察到文獻提到的燃燒以及光聲響現象,相反的,藉由電性量測以及電子顯微鏡下的觀察,發現奈米碳管照射閃光燈之後會有斷裂的現象;除此之外,我們在不同的氣體環境下將碳管薄膜照射閃光燈,也會觀察到其他不同於奈米碳管斷裂的現象。在實驗討論中,我們利用文獻中氣體吸附對奈米碳管電性的影響機制,以及並聯電阻的模型來解釋本實驗的結果。
關於本論文的章節編排,第一章為文獻回顧,第二章是實驗動機,第三章討論碳管薄膜光電流的現象,第四章是閃光燈照射對於碳管薄膜電性的影響討論,第五章結論是論文最後的部份。
Abstract
We discover photo-current generation at SWNT-electrode contact at zero bias. The directions of this current can be controlled via focusing the laser bean (532 nm) on different position of the SWNTs film; meanwhile, current can be significantly amplified by a factor of 1.5 under bias voltage operation. Phenomenon resembles the conventional S-based Schottky diodes and underlying mechanism involves reduction of barrier height and widening of depletion region upon bias application.
In addition, we have shown here that flashing of SWNT films in vacuum and air causes nanotube cutting and O2 desorption, followed by re-adsorption of O2. The cutting at Fe-defect entities is triggered via extra heat provided by photo-induced chemical reaction. Considerable amount of heat released by oxide and CO2 formations assists cutting process along tube circumference. Our systematical experiments consist of SWNT films flashed in vacuum, air and atmospheric N2 respectively, in conjunction with resistance measurements. The variation of film resistance with lighting shows stepwise profiles and similar effect is also present in treated SWNT film. In the end, we hope to establish possible models of the photo-generated current in SWNTs film and the flashing effect, furthermore, the rationalization of relevant mechanism has also been attempt.
參考資料
[1] Carbon Nanotubes, M. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Eds , Springer-Verlag , Berlin (2001).
[2]White CT, Todorov TN. Nature 393, 240 (1998).
[3] M. S. Fuhrer, B. M. Kim, T. Dürkop, and T. Brintlinger, Nano Letters 2, 755 (2002).
[4] Optical Semiconductor Device, Mitsuo fukuda, Wiley-interscience (1998).
[5] M.J. O'Connell, S.M. Bachilo, C.B. Hu®man, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.E. Smalley, and R.B. Weisman, Science 297, 2361 (2002).
[6] Habdbook of Nanostructured Materials and Nano Technology, vol 4,Hari Singh Nalwa, Academic press, New York, U.S.A. (2000).
[7] S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science, 298, 2361 (2002).
[8] A. Fujiwara, Y. Matsuoka, Y. Matsuoka, H. Suematsu, N. Ogawa K. ,Carbon, 42, 919 (2004) .
[9] Y. Zhang, S Iijima. Phys Rev Lett; 82,17:3472-5 (1999).
[10] I.A. Levitsky, W.B. Euler, Appl. Phys. Lett. 83, 1857 (2003).
[11] Robert J. Chen, Nathan R. Franklin, Jien Kong, Jien Cao, Thomas W. Tombler, Yuegang Zhang, Appl. Phys. Lett.79,14:2258 (2001).
[12] J.A. Misewich, R. Martel, Ph. Avouris, J.C. Tsang, S. Heinze, and J. Tersoff, Science 300, 783 (2003).
[13] M. Freitag, Y. Martin, J. A. Misewich, R. Martel, Ph. Nano Lett. 3 , 8, 1067 (2003).
[14] G. U. Sumanasekera, C. K.W. Adu, S. Fang, P. C. Eklund1, Phys Rev Lett 85, 5, (2000).
[15] E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, and T. L. Reinecke, Science 307, 1942 (2005).
[16] Hugo E. Romero, Kim Bolton, Arne Rosén, and Peter C. Eklund, Science 307, 89 (2005).
[17] P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Science 287, 1801 (2000).
[18] S. H. Jhi, S. G. Louie, M. L. Cohen, Phys Rev Lett 85, 8, (2000).
[19] A. Rochefort, M.D. Ventra, Ph. Avouris, Appl. Phys. Lett. 78, 2521 (2001).
[20] F. Léonard, J. Tersoff, Phys. Rev. Lett. 84, 4693 (2000).
[21] A.A. Odintsov, Phys. Rev. Lett. 85, 150 (2000).
[22] S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, Ph. Avouris, Phys. Rev. Lett. 89, 106801-1 (2002).
[23] D. Kang, N. Park, Appl. Phys. Lett. 86, 093105 (2005).
[24] C. Klinke, J. Chen, A. Afzali, Ph. Avouris, Nano lett. 5, 555 (2005) .
[25] D. Kaminishi, H. Ozaki, Y. Ohno, K. Maehashi. Appl. Phys. Lett. 86, 113115 (2005).
[26] P.M. Ajayan, M. Terrones, A.D.L. Guardia, V. Huc, N. Grobert, B.Q. Wei, H. Lezec, G. Ramanath, T.W. Ebbesen, Science 296, 705 (2002).
[27] B. Bockrath, J.K. Johnson, D.S. Sholl, B. Howard, C. Matranga, W. Shi, D. Sorescu, Science 297, 192(2002).
[28] N. Braidy, G..A. Botton, A. Adronov, Nano Lett. 2, 1277 (2002).
[29] J. Smits, B. Wincheski, M. Namkung, R. Crooks, R. Louie, Mater. Sci. & Eng. A 358, 384 (2003).
[30] H. M. Cheng, F. Li, X. San, S.D.M. Brown, M.A. Pimenta, A. Marucci, G. Dresselhaus, M.S. Dresselhaus, Chem. Phys. Lett. 289, 602 (1998).
[31] L. Ci , J. Wei, B. Wei, J. Liang, C. Xu and D. Wu, Carbon 39, 329 (2001).
[32] R. Kamalakaran, M. Terrones, T. Seeger, Ph. Kohler-Redlich, M. Ru
hle, Y. A. Kim, T. Hayashi, and M. Endo, Appl. Phys. Lett. 77 , 3385 (2000).
[33].X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu and D. Wu, Chem. Phys. Lett. 362, 285 (2002).
[34] S. Barazzouk, S. Hotchandani, K. Vinodgopal, P. V. Kamat, J. Phys. Chem. B. 108, 17015 (2004).
[35] M. Akbi, A. Lefort, J. Phys. D. Appl. Phys. Lett. 31, 1301 (1998).
[36] Y. Xue, M.A. Ratner, Appl. Phys. Lett. 83, 2429 (2003).
[37] C. Kim, B. Kim, S.M. Lee, C. Jo, Y.H. Lee, Phys. Rev B 65, 165418-1 (2002).
[38] D.L. John, L.C. Castro, J. Clifford, D.L. Pulfrey, IEEE. Trans on Nanotech, 2, 175 (2003).
[39] Metal-Semiconductor Schottky Barrier Junctions and Their Application. B.L. Sharma, Plenum, New York,(1984).
[40] Complete Guide to Semiconductor Devices. Kwok K. Ng, IEEE press, Wiley-interscience (2002).
[41] T. Yamada, Phys. Rev. B 69, 125408-1 (2004).
[42] C. Kim, B. Kim, S.M. Lee, C. Jo, Y.H. Lee, Phys. Rev B 65, 165418-1 (2002).
[43] A. Rochefort, Ph. Avouris, J. Phys.Chem. A 104, 9807 (2000).
[44] M. Grujicic, G. Cao, A.M. Rao, T.M. Tritt, S. Nayak, Appl. Surf. Sci. 214, 289 -303 (2003).
[45] A. Kuznetsova, I. Popova, J.T. Yates, Jr.M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smalley, H.H. Hwu, J.G. Chen, J. Am. Chem. Soc. 123, 10699 (2001).
[46] D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier, J.P. Selegue, Nano Lett, 2, 615 (2002).
[47] A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269, 1550 (1995).
[48] J. Zhang, H.L. Zou, Q. Qing, Y.L. Tang, Q.W. Li, Z.F. Liu, X.Y. Guo, Z.L. Du, J. Phys. Chem. B 107, 3712 (2003).