研究生: |
陳泉旭 Chen, Chiuan-Hsu |
---|---|
論文名稱: |
多用戶正交分頻多工感知無線電系統之資源分配演算法 Resource Allocation Algorithms for Multiuser OFDM-Based Cognitive Radio Systems |
指導教授: |
王晉良
Wang, Chin-Liang |
口試委員: |
鐘嘉德
馮世邁 黃家齊 陳紹基 李志鵬 黃正光 王晉良 |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 感知無線電 、合作式通訊 、多用戶正交分頻多工 、資源分配 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近年來寬頻通訊應用對頻譜資源的大量需求,導致有限的頻譜資源變得不敷使用與擁擠,但在固定式的頻譜管理政策下,已授權使用者(或稱主要使用者)的頻譜使用率卻很低。為了解決這個問題,感知無線電(CR,cognitive radio)這種能根據所處的環境來調整自身系統的新興技術被提出,它能在不干擾已授權使用者下,使未授權使用者(或稱次要使用者)能存取已授權使用者的頻譜,進而提高整體頻譜使用率。所以在多用戶正交分頻多工(MU-OFDM,multiuser orthogonal frequency division multiplexing)之感知無線電系統中,要進一步改善頻譜使用率的一種方式就是有效率的分配能使用的有限資源,包含能存取的主要使用者子載波與每個子載波上的功率。在本論文中,基於不干擾主要使用者通訊與節省次要使用者能量的考量下,我們將針對MU-OFDM CR系統來提出數個低複雜度的資源分配演算法來分配子載波與功率。
首先,在以限制次要使用者的最高功率來保護主要使用者通訊的情況下,我們提出一個低複雜度的子載波與功率聯合分配法。若功率分配已知,我們推導出一個使所有子載波通訊容量總和最大的子載波分配規則。根據這個規則,我們著手發展出一種子載波與功率聯合分配的架構,使得通訊容量總和最佳化的過程能在子載波與功率個別最佳化之間輪流執行。若子載波分配已知,在最高功率限制下,通常會使用一套具有高複雜度的最佳功率分配演算法(即迭代式分區注水演算法)去反覆執行注水演算,來決定每個子載波上的功率是不是比最高功率還大。這樣反而讓功率分配變得沒有效率。為了讓功率分配更有效率,我們技巧地利用一些要達成最佳功率分配時所必須滿足的條件,來設計一個低複雜度的演算法以滿足每個子載波上的最高功率限制,並更新功率分配後對應的水平面。因此,我們把所提出的高效率功率分配演算法整合於子載波與功率聯合分配的架構內,以便獲得最大的通訊容量並同時降低複雜度。
為了進一步提高通訊容量,使用合作式通訊技術所帶來的空間多樣性以改善通訊品質是近年來的趨勢。但加入合作式通訊技術後,也使得推導最佳的資源分配變得複雜。為了解決此問題,我們將一個三節點中繼網路(three-node relay network)簡化成一個具有等效通道增益的兩節點網路(two-node network),並進一步利用此雙節點網路將合作式MU-OFDM CR系統的資源分配問題改寫成與未使用合作式通訊的MU-OFDM CR系統的資源分配問題類似的形式;所以我們之前基於MU-OFDM CR系統發展的子載波與功率聯合分配法可以用於決定合作式MU-OFDM CR系統的資源分配。此外,藉由等效通道增益,我們亦探討中繼點的位置對系統容量的影響:當中繼點在資訊源(source)與目的端之間的中點時,系統容量可以達到最大值;但當中繼點在資訊源與目的端的中垂線上時,系統容量對資訊源-中繼點-目的端這條線的角度很敏感,相較之下,當中繼點離資訊源或目的端很近時,系統容量對這個角度並不敏感。
最後,基於子載波的可靠度,我們也發展一個高效率的功率分配演算法。子載波的可靠度是受不完美的頻譜偵測(imperfect spectrum sensing)與主要使用者重新回來使用子載波(reoccupation)的影響。在這些情況下,次要使用者並不知道主要使用者正在使用子載波,所以次要使用者的通訊會受主要使用者的干擾而造成通訊容量損失。為了把子載波的可靠度納入功率分配的最佳化問題,我們使用上述因素的機率來找通訊容量期望值總和的最大值,而不是像傳統的功率分配最佳化問題去找通訊容量總和的最大值。基於我們所提的最佳化問題,我們亦推導出其最佳功率分配,但它必須先依據最高功率限制將分配到的子載波分成兩類,再用高複雜度的數值分析方法來解非線性的方程式以算出子載波上的功率。為了有效率地分配功率,我們首先在可靠的精確度之下,去對最佳功率分配作近似,由近似的結果,再提出一個低複雜度的功率分配演算法來更新功率分配後對應的水平面,以判定是否滿足最高功率限制。不論影響子載波可靠度的參數如何變動,使用我們所提的節能低複雜度功率分配演算法的通訊容量期望值總和能逼近使用最佳解所得的。
Cognitive radio (CR) is an emerging technology for maximizing spectrum utilization under the fixed spectrum management policy and can be adapted to a dynamic wireless environment to provide flexible wireless access. In a multiuser orthogonal frequency division multiplexing (MU-OFDM) CR system, one way to improve spectrum utilization is to efficiently allocate the limited resources, which are the available subcarriers of licensed users (also referred to as primary users [PUs]) and the allocated power on these subcarriers. Given the concerns of protecting PUs and conserving the energy of unlicensed users (also referred to as secondary users [SUs]), this dissertation addresses the resource allocation problem for MU-OFDM CR systems.
In this dissertation, we first present a joint subcarrier and power allocation (JSPA) algorithm for MU-OFDM CR systems, where a peak power constraint is used to protect PUs. For subcarrier allocation, a rule is derived to maximize the sum capacity for a given power distribution. With this rule, we form a JSPA algorithm in which the sum capacity optimization can be alternated between the subcarrier and power. To simplify the high-complexity optimal power allocation algorithm (i.e., the iterative partitioned water-filling [IPWF] algorithm) for the joint scheme, we further develop a simple method for updating the water level when each subcarrier is allocated to an SU. The proposed method to update the water level achieves a system capacity close to that of the JSPA algorithm with optimal power distribution, and with much lower computational complexity.
To study a JSPA algorithm for cooperative MU-OFDM CR systems, we simplify a three-node relay network to a two-node network with the equivalent channel gain and then formulate the resource allocation problem for a cooperative MU-OFDM CR system in a form similar to that of a non-cooperative MU-OFDM CR system. Therefore, the JSPA algorithm for MU-OFDM CR systems can be extended to the cases for cooperative MU-OFDM CR systems. The proposed algorithm achieves a system capacity close to that of the JSPA algorithm with optimal power distribution for cooperative transmission, and with much lower computational complexity. In addition, if the relay node is at the midpoint between the source and destination, the system capacity can reach its maximum value. However, when the relay is at a midway location (on the perpendicular bisector of the line segment) different from the midpoint, the capacity is sensitive to the angle of the line source-relay-destination. In contrast, when the relay is in proximity to either the source node or the destination node, the system capacity is not sensitive to the angle.
Finally, we investigate an efficient power allocation algorithm based on the reliability of subcarriers for OFDM-based CR systems. The reliability of subcarriers is affected by imperfect spectrum sensing and by PU reoccupation, which introduce interference from the PU and cause rate loss to the SUs’ transmissions. To incorporate the reliability of subcarriers into a power allocation problem, we maximize the sum expected capacity using probabilities that reflect the effects of the reliability of subcarriers, instead of maximizing the sum capacity in traditional OFDM systems. A peak power constraint is also included to protect the PUs’ communication links. Based on the modeled optimization problem, we derive the optimal power distribution, which classifies the assigned subcarriers according to the peak power constraint and then allocates power using high-complexity numerical methods to solve a nonlinear equation. To reduce the computational complexity, we approximate the optimal power allocation with reliable accuracy and then propose a low-complexity power allocation algorithm for updating the water level, which is similar to the IPWF algorithm, to determine if the peak power constraint is satisfied. The proposed energy-efficient algorithm achieves a sum expected capacity close to that of the optimal solution, but with much lower computational complexity, regardless of the change in the parameters of the reliability of subcarriers.
[1] G. Staple and K. Werbach, “The end of spectrum scarcity,” IEEE Spectr., vol. 41, no. 3, pp. 48–52, Mar. 2004.
[2] Federal Communications Commission (FCC), “Spectrum policy task force,” ET Docket no. 02–135, Nov. 15, 2002.
[3] R. I. C. Chiang, G. B. Rowe, and K. W. Sowerby, “A quantitative analysis of spectral occupancy measurements for cognitive radio,” in Proc. 2007 IEEE Veh. Technol. Conf.-Spring (VTC 2007-Spring), Dublin, Ireland, Apr. 2007, pp. 3016–3020.
[4] M. Wellens, J. Wu, and P. M□h□nen, “Evaluation of spectrum occupancy in indoor and outdoor scenario in the context of cognitive radio,” in Proc. 2007 IEEE Int. Conf. Cognitive Radio Oriented Wireless Netw. Commun. (CROWNCOM 2007), Orlando, FL, Jul. 31–Aug. 3, 2007, pp. 420–427.
[5] T. Erpek, K. Steadman, and D. Jones, “Spectrum occupancy measurements: Dublin, Ireland,” Shared Spectrum Company, Vienna, VA, Tech. Rep., Nov. 2007 [Online]. Available: http://www.sharedspectrum.com/measurements/
[6] M. H. Islam, C. L. Koh, S. W. Oh, X. Qing, Y. Y. Lai, C. Wang, Y.-C. Liang, B. E. Toh, F. Chin, G. L. Tan, and W. Toh, “Spectrum survey in Singapore: Occupancy measurements and analyses,” in Proc. 2008 IEEE Int. Conf. Cognitive Radio Oriented Wireless Netw. Commun. (CROWNCOM 2008), Singapore, May 2008.
[7] M. L□pez-Ben□tez, A. Umbert, and F. Casadevall, “Evaluation of spectrum occupancy in Spain for cognitive radio applications,” in Proc. 2009 IEEE Veh. Technol. Conf.-Spring (VTC 2009-Spring), Barcelona, Spain, Apr. 2009.
[8] J. Mitola III and G. Q. Maguire, Jr., “Cognitive radio: Making software radios more personal,” IEEE Pers. Commun., vol. 6, no. 4, pp. 13–18, Aug. 1999.
[9] A. Ghasemi and E. S. Sousa, “Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs,” IEEE Commun. Mag., vol. 46, no. 4, pp. 32–39, Apr. 2008.
[10] T. Y□cek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Commun. Surveys Tuts., vol. 11, no.1, pp. 116–130, First Quarter 2009.
[11] S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE, vol. 97, no. 5, pp. 849–877, May 2009.
[12] K. B. Letaief and W. Zhang, “Cooperative communications for cognitive radio networks,” Proc. IEEE, vol. 97, no. 5, pp. 878–893, May 2009.
[13] Y. Zeng, Y.-C. Liang, A. T. Hoang, and R. Zhang, “A review on spectrum sensing for cognitive radio: Challenges and solutions,” EURASIP J. Advances Signal Process., vol. 2010, 2010.
[14] Q. Zhao and B. M. Sadler, “A survey of dynamic spectrum access,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 79–89, May 2007.
[15] E. Hossain, D. Niyato, and Z. Han, Dynamic Spectrum Access and Management in Cognitive Radio Networks. New York: Cambridge University Press, 2009.
[16] A. M. Wyglinski, M. Nekovee, and Y. T. Hou, eds., Cognitive Radio Communications and Networks: Principles and Practice. Burlington, MA: Academic Press, Elsevier, 2010.
[17] R. Zhang, Y.-C. Liang, and S. Cui, “Dynamic resource allocation in cognitive radio networks,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 102–114, May 2010.
[18] K. J. R. Liu and B. Wang, Cognitive Radio Networking and Security: A Game-Theoretic View. New York: Cambridge University Press, 2011.
[19] A. Jamalipour, T. Wada, and T. Yamazato, “A tutorial on multiple access technologies for beyond 3G mobile networks,” IEEE Commun. Mag., vol. 43, no. 2, pp. 110–117, Feb. 2005.
[20] H. Liu and G. Li, OFDM-Based Broadband Wireless Networks: Design and Optimization. New Jersey: John Wiley & Sons, 2005.
[21] G. Berardinelli, L. A. M. Ruiz de Temi□o, S. Frattasi, M. I. Rahman, and P. Mogensen, “OFDMA vs. SC-FDMA: Performance comparison in local area IMT-A scenarios,” IEEE Wireless Commun. Mag., vol. 15, no. 5, pp. 64–72, Oct. 2008.
[22] IEEE P802.22/DRAFTv2.0, “Draft Standard for Wireless Regional Area Networks Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands,” May 2009.
[23] IEEE Standard for Local and Metropolitan Area Networks–Part 16: Air Interface for Broadband Wireless Access Systems, IEEE Standard 802.16, May 2009.
[24] Z. Han and K. J. R. Liu, Resource Allocation for Wireless Networks: Basics, Techniques, and Applications. New York: Cambridge University Press, 2008.
[25] J. Lee, R. V. Sonalkar, and J. M. Cioffi, “A multi-user rate and power control algorithm for VDSL,” in Proc. 2002 IEEE Global Telecommun. Conf. (Globecom 2002), Taipei, Taiwan, vol. 2, Nov. 2002, pp. 1264–1268.
[26] K. Seong, M. Mohseni, and J. M. Cioffi, “Optimal resource allocation for OFDMA downlink systems,” in Proc. 2006 IEEE Int. Symp. Inform. Theory (ISIT 2006), Seattle, WA, Jul. 2006, pp. 1394–1398.
[27] I. C. Wong and B. L. Evans, “Optimal OFDMA resource allocation with linear complexity to maximize ergodic weighted sum capacity,” in Proc. 2007 IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP 2007), Honolulu, HI, Apr. 2007, pp. III-601–III-604.
[28] Y.-W. Hong, W.-J. Huang, F.-H. Chiu, and C.-C. J. Kuo, “Cooperative communications in resource-constrained wireless networks,” IEEE Signal Process. Mag., vol. 24, no. 3, pp. 47–57, May 2007.
[29] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity–Part I: System description,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.
[30] —□□, “User cooperation diversity–Part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1939–1948, Nov. 2003.
[31] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.
[32] K. J. R. Liu, A. K. Sadek, W. Su, and A. Kwasinski, Cooperative Communications and Networking. New York: Cambridge University Press, 2008.
[33] Y.-W. P. Hong, W.-J. Huang, and C.-C. J. Kuo, Cooperative Communications and Networking: Technologies and System Design. New York: Springer, 2010.
[34] F. F. Digham, “Joint power and channel allocation for cognitive radios,” in Proc. 2008 IEEE Wireless Commun. Netw. Conf. (WCNC 2008), Las Vegas, NV, Mar. 2008, pp. 882–887.
[35] X. Kang, Y.-C. Liang, and A. Nallanathan, “Optimal power allocation for fading channels in cognitive radio networks under transmit and interference power constraints,” in Proc. 2008 IEEE Int. Conf. Commun. (ICC 2008), Beijing, China, May 2008, pp. 3568–3572.
[36] P. Wang, M. Zhao, L. Xiao, S. Zhou, and J. Wang, “Power allocation in OFDM-based cognitive radio systems,” in Proc. 2007 IEEE Global Telecommun. Conf. (Globecom 2007), Washington, DC, Nov. 2007, pp. 4061–4065.
[37] S. M. Almalfouh and G. L. St□ber, “Interference-aware power allocation in cognitive radio networks with imperfect spectrum sensing,” in Proc. 2010 IEEE Int. Conf. Commun. (ICC 2010), Cape Town, South Africa, May 2010.
[38] Z. Hasan, E. Hossain, C. Despins, and V. K. Bhargava, “Power allocation for cognitive radios based on primary user activity in an OFDM system,” in Proc. 2008 IEEE Global Telecommun. Conf. (Globecom 2008), New Orleans, LA, Nov. 30–Dec. 4, 2008.
[39] Z. Hasan, G. Bansal, E. Hossain, and V. K. Bhargava, “Energy-efficient power allocation in OFDM-based cognitive radio systems: A risk-return model,” IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 6078–6088, Dec. 2009.
[40] D. T. Ngo, C. Tellambura, and H. H. Nguyen, “Resource allocation for OFDMA-based cognitive radio multicast networks with primary user consideration,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1668–1679, May 2010.
[41] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Select. Areas Commun., vol. 21, no. 2, pp. 171–178, Feb. 2003.
[42] Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wireless Commun., vol. 4, no. 6, pp. 2726–2737, Nov. 2005.
[43] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Advances in Computational Mathematics, pp. 329–359, 1996.
[44] J. M. Cioffi. (2008) EE379C Advanced Digital Communications [Online]. Available: http://www.stanford.edu/class/ee379c
[45] T. M. Cover and J. A. Thomas, Elements of Information Theory. 2nd Ed. New York: John Wiley & Sons, 2006.
[46] P. Banelli, “Theoretical analysis and performance of OFDM signals in nonlinear fading channels,” IEEE Trans. Wireless Commun., vol. 2, no. 2, pp. 284–293, Mar. 2003.
[47] Guideline for Evaluation of Radio Transmission Technologies for IMT-2000, Recommendations of the ITU-R, Rec. ITU-R M. 1225, 1997.
[48] Z. Quan, S. J. Shellhammer, W. Zhang, and A. H. Sayed, “Spectrum sensing by cognitive radios at very low SNR,” in Proc. 2009 IEEE Global Telecommun. Conf. (Globecom 2009), Honolulu, HI, Nov. 30–Dec. 4, 2009.
[49] T. Rappaport, Wireless Communications: Principles and Practice. 2nd Ed. Upper Saddle River, NJ: Prentice Hall PTR, 2002.
[50] Q. Zhang, J. Zhang, C. Shao, Y. Wang, P. Zhang, and R. Hu, “Power allocation for regenerative relay channel with Rayleigh fading,” in Proc. 2004 IEEE Veh. Technol. Conf.-Spring (VTC 2004-Spring), Milan, Italy, vol. 2, May 2004, pp. 1167–1171.
[51] H. Ochiai, P. Mitran, and V. Tarokh, “Variable-rate two-phase collaborative communication protocols for wireless networks,” IEEE Trans. Inf. Theory, vol. 52, no. 9, pp. 4299–4313, Sep. 2006.
[52] S. Boyd and L. Vandenberghe, Convex Optimization. New York: Cambridge University Press, 2004.
[53] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. Philadelphia, PA : Society for Industrial and Applied Mathematics, 2001.
[54] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes. 4th Ed., New York: McGraw-Hill, 2002.
[55] C. R. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. J. Shellhammer, and W. Caldwell, “IEEE 802.22: The first cognitive radio wireless regional area network standard,” IEEE Commun. Mag., vol. 47, no. 1, pp. 130–138, Jan. 2009.