簡易檢索 / 詳目顯示

研究生: 陳玫光
Chen, Mei-Kuang
論文名稱: Involvement of amino acid sequence 299-308 of tumor suppressor p53 in repair of UV-induced DNA damage
抑癌因子p53胺基酸序列299-308參與紫外光誘發之去氧核醣核酸損傷修復
指導教授: 劉銀樟
Liu, Yin-Chang
口試委員: 林嬪嬪
王祖興
劉銀樟
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 77
中文關鍵詞: 抑癌因子p53XPB核苷酸切除修復紫外光
外文關鍵詞: p53, XPB, nucleotide excision repair, UV
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    In mammalian cells, nucleotide excision repair (NER) is the main mechanism to repair DNA damage induced by UV irradiation. Previously, p53 has been shown to be indispensible in excision activity of nuclear extract by using comet-nuclear extract (comet-NE) assay. The essential sequence of p53 in the regard has been mapped to amino acid residues 299-308. This study is focused on the effect of deletion of amino acid residues 299-308 p53 on repair of UV-induced DNA damage. In situ study with cells expressing deletion 299-308 p53 shows the reduction of both NE incision activity and the ability of resolving DNA double helix at DNA damage sites. The experiments with synthesized peptides further confirm the importance of this sequence in p53:XPB interaction. When the p53 299-308 a.a. sequence-derived peptides were incubated with the nuclear extract prior to the comet-NE assay, the excision activity of NE was abolished as expected. We further proved that this synthetic peptide is able to interact with XPB, and to diminish the p53:XPB interaction. Moreover, in comparison to the wild type sequence, the peptide with alanine substitutions at both Lys 305 and Arg 306 completely lost the inhibitory effect, showing the electrostatic nature between p53 and XPB. Thus, the results provide evidence that the peptide derived from the sequence of interest may be used for drug screening.


    中 文 摘 要
    核苷酸切除修復是哺乳類細胞用以修復紫外光造成去氧核醣核酸傷害的主要機制。先前研究藉由彗星-細胞核萃取物的實驗指出,抑癌因子p53在核苷酸切除修復中扮演不可或缺的角色,並且將參與核苷酸切除修復的p53氨基酸序列鎖定在第299到308個胺基酸。這篇論文關注於p53胺基酸序列299-308透過XPB蛋白質參與核苷酸切除修復的影響。論文中的實驗結果顯示缺少胺基酸序列299-308的p53蛋白質會減低細胞核萃取物解開去氧核醣核酸雙股螺旋以及切除去氧核醣核酸上的共價連結物的能力。另外在細胞核萃取物中,合成的p53 299-308胺基酸序列胜肽會與正常的p53蛋白質競爭與XPB蛋白質的結合,並且消除核苷酸切除修復中切除共價連結物的能力,更加證實p53 299-308胺基酸序列在與XPB蛋白質結合影響核苷酸切除修復的重要性。除此之外,論文中利用丙胺酸取代p53 299-308胺基酸序列胜肽中的賴氨酸與精氨酸消除了p53 299-308胺基酸序列胜肽對核苷酸切除修復的抑制,提供了p53和XPB蛋白質間可能藉由帶電性的胺基酸結合的可能性。本篇論文提供了關於p53 299-308胺基酸序列藉由與XPB蛋白質交互作用,進而影響核苷酸切除修復機制的實驗數據,而合成的p53 299-308胺基酸序列胜肽也提供了篩選p53抑制藥物的途徑。

    Table of Contents Contents Page Abstract 1 中文摘要 2 致謝詞 3 1 Introduction 1.1 Nucleotide excision repair (NER)................................................................ 1.2 Tumor suppressor protein 53 (TP53)............................................................ 1.3 TFIIH p89, XPB............................................................................................ 1.4 Comet assay, Comet-Den V assay and Comet-NE assay............................. 1.5 Aims of this study 4 5 6 7 9 2 Materials and methods 2.1 Cell cultures.................................................................................................. 2.2 UV irradiation............................................................................................... 2.3 Expression plasmids..................................................................................... 2.4 DNA transfection and stable clone.............................................................. 2.5 Nuclear extract (NE) preparation................................................................. 2.6 Comet-NE assay........................................................................................... 2.7 Comet-DenV assay……………………………….……………………….. 2.8 Calculation of incision activity……………………………………………. 2.9 Whole cell extract preparation...................................................................... 2.10 Co-immunoprecipitation assay (Co-IP)........................................................ 2.11 Western blotting............................................................................................ 2.12 Immunofluorescence..................................................................................... 2.13 Antibodies……………………………………………………….………… 10 10 11 11 12 13 14 15 15 16 17 18 19 3 Results 3.1 Cloning of deletion 299-308 p53 expression plasmid and stable clones… 3.2 Deletion of 299-308 a.a. reduces NER excision activity.............................. 3.3 Deletion a.a. 299-308 of p53 affects NER repairing rate............................. 3.4 Deletion of 299-308 amino acids of p53 affects the binding formation of p53:XPB complex......................................................................................... 3.5 Deletion 299-308 p53 affect recruitment of p53, XPB, RPA to CPD sites................................................................................................................ 3.6 The p53 299-308 sequence-derived peptide attenuates incision activity of nuclear extract............................................................................................... 3.7 The p53 299-308 sequence -derived peptide can interact directly with XPB in vitro and site-specific mutation of p53 peptide abolishes the inhibition of nucleotide excision repair incision activity.............................. 21 22 22 23 24 25 26 4 Conclusion and Discussion 4.1 Deletion 299-308 p53 also locates in nucleus............................................... 4.2 Effect of p53 sequence 299-308 on NER --- Interaction between p53 and XPB............................................................................................................... 4.3 Electrostastic nature between p53 and XPB interaction............................... 4.4 Peptide competition effect support the importance of p53 a.a. 299-308......................................................................................................... 4.5 Modification and regulation of p53 may affect its p21 transactivation capacity......................................................................................................... 4.6 Potential application of synthesized p53 299-308 peptide............................ 28 29 31 33 34 36 5 Figures and legends................................................................................................ 38 6 Reference................................................................................................................ 55 7 Supplementary data 7.1 The deletion 299-308 p53 inhibits UV-induced cell death as wild-type p53 does........................................................................................................ 7.2 The effect of mutation p53 on NER is transcription independent………… 7.3 No effect of p53 299-308 sequence-derived peptide on excision activity of base excision repair....................................................................................... 63 64 64 8 Appendix I. Structure of p53 protein…………………………………………………….. II. Effects of C-terminal series truncation of p53 on excision activity of NEs... III. Plasmid map of pCEP4-dp53……………………………………………… IV. Diminish of excision activity with p53 K305A and R306A mutation……... V. Alanine substitutions of K305A or/and R306A reduce the recruitment XPB to UV-elicited CPD sites…………………………………………………… VI. Alanine substitutions of K305A or/and R306A reduce the recruitment RPA to CPD sites………………………………………………………………… 70 72 73 74 75 76

    6 Reference
    Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. European Journal of Biochemistry 268: 2764-2772

    Athar M, Elmets CA, Kopelovich L (2011) Pharmacological activation of p53 in cancer cells. Curr Pharm Des 17: 631-639

    Balajee AS, Bohr VA (2000) Genomic heterogeneity of nucleotide excision repair. Gene 250: 15-30

    Beckerman R, Prives C (2010) Transcriptional regulation by p53. Cold Spring Harb Perspect Biol 2: a000935

    Bergstein T, Henis Y, Cavari BZ (1979) Investigations on the photosynthetic sulfur bacterium Chlorobium phaeobacteroides causing seasonal blooms in Lake Kinneret. Can J Microbiol 25: 999-1007

    Brooks CL, Gu W (2010) New insights into p53 activation. Cell Res 20: 614-621

    Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E (2010) Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res 704: 12-20

    Chang YC, Jan KY, Cheng CA, Liao CB, Liu YC (2008) Direct involvement of the tumor suppressor p53 in nucleotide excision repair. DNA Repair (Amst) 7: 751-761

    Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265: 346-355

    Coin F, Auriol J, Tapias A, Clivio P, Vermeulen W, Egly JM (2004) Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity. EMBO J 23: 4835-4846

    Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26: 249-261

    Collins AR (2009) Investigating oxidative DNA damage and its repair using the comet assay. Mutat Res 681: 24-32

    Collins AR, Dusinska M, Horvathova E, Munro E, Savio M, Stetina R (2001) Inter-individual differences in repair of DNA base oxidation, measured in vitro with the comet assay. Mutagenesis 16: 297-301

    de Bruin EC, Medema JP (2008) Apoptosis and non-apoptotic deaths in cancer development and treatment response. Cancer Treat Rev 34: 737-749

    Egly JM (2001) The 14th Datta Lecture. TFIIH: from transcription to clinic. FEBS Lett 498: 124-128

    Fernandez-Cruz ML, Valdehita A, Alonso M, Mann E, Herradon B, Navas JM (2011) Biological and chemical studies on aryl hydrocarbon receptor induction by the p53 inhibitor pifithrin-alpha and its condensation product pifithrin-beta. Life Sci 88: 774-783

    Francis MA, Bagga PS, Athwal RS, Rainbow AJ (1997) Incomplete complementation of the DNA repair defect in cockayne syndrome cells by the denV gene from bacteriophage T4 suggests a deficiency in base excision repair. Mutat Res 385: 59-74

    Friedberg EC (2001) How nucleotide excision repair protects against cancer. Nat Rev Cancer 1: 22-33

    Goh AM, Coffill CR, Lane DP (2011) The role of mutant p53 in human cancer. J Pathol 223: 116-126

    Goldfarb DS, Corbett AH, Mason DA, Harreman MT, Adam SA (2004) Importin [alpha]: a multipurpose nuclear-transport receptor. Trends in Cell Biology 14: 505-514

    Golubovskaya VM, Finch R, Cance WG (2005) Direct interaction of the N-terminal domain of focal adhesion kinase with the N-terminal transactivation domain of p53. J Biol Chem 280: 25008-25021

    Gong GZ, Jiang YF, He Y, Lai LY, Zhu YH, Su XS (2004) HCV NS5A abrogates p53 protein function by interfering with p53-DNA binding. World J Gastroenterol 10: 2223-2227

    Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458: 1127-1130

    Gudkov AV, Komarova EA (2005) Prospective therapeutic applications of p53 inhibitors. Biochem Biophys Res Commun 331: 726-736

    Guzder SN, Sung P, Bailly V, Prakash L, Prakash S (1994) RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription. Nature 369: 578-581

    Hall H, Gursky J, Nicodemou A, Rybanska I, Kimlickova E, Pirsel M (2006) Characterization of ERCC3 mutations in the Chinese hamster ovary 27-1, UV24 and MMC-2 cell lines. Mutat Res 593: 177-186

    Hoeijmakers JH, Egly JM, Vermeulen W (1996) TFIIH: a key component in multiple DNA transactions. Curr Opin Genet Dev 6: 26-33

    Hoogstraten D, Nigg AL, Heath H, Mullenders LH, van Driel R, Hoeijmakers JH, Vermeulen W, Houtsmuller AB (2002) Rapid switching of TFIIH between RNA polymerase I and II transcription and DNA repair in vivo. Mol Cell 10: 1163-1174

    Hu GM, Liu LM, Zhang JX, Hu XD, Duan HJ, Deng H, He M, Luo ZJ, Liu JM, Luo J (2006) The role of XPB in cell apoptosis and viability and its relationship with p53, p21(waf1/cip1) and c-myc in hepatoma cells. Dig Liver Dis 38: 755-761

    Hwang BJ, Ford JM, Hanawalt PC, Chu G (1999) Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc Natl Acad Sci U S A 96: 424-428

    Jaitovich-Groisman I, Benlimame N, Slagle BL, Perez MH, Alpert L, Song DJ, Fotouhi-Ardakani N, Galipeau J, Alaoui-Jamali MA (2001) Transcriptional regulation of the TFIIH transcription repair components XPB and XPD by the hepatitis B virus x protein in liver cells and transgenic liver tissue. J Biol Chem 276: 14124-14132

    Jeong JH, Kang SS, Park KK, Chang HW, Magae J, Chang YC (2010) p53-independent induction of G1 arrest and p21WAF1/CIP1 expression by ascofuranone, an isoprenoid antibiotic, through downregulation of c-Myc. Mol Cancer Ther 9: 2102-2113

    Kim C, Snyder RO, Wold MS (1992) Binding properties of replication protein A from human and yeast cells. Mol Cell Biol 12: 3050-3059

    Kim IS, Kim DH, Han SM, Chin MU, Nam HJ, Cho HP, Choi SY, Song BJ, Kim ER, Bae YS, Moon YH (2000) Truncated form of importin alpha identified in breast cancer cell inhibits nuclear import of p53. J Biol Chem 275: 23139-23145

    Krejci L, Chen L, Van Komen S, Sung P, Tomkinson A (2003) Mending the break: two DNA double-strand break repair machines in eukaryotes. Prog Nucleic Acid Res Mol Biol 74: 159-201

    Lantsov VA (1998) [DNA repair and carcinogenesis: universal mechanisms for repair in pro- and eukaryotes and consequences of the damage in humans]. Mol Biol (Mosk) 32: 757-772

    Lee S, Elenbaas B, Levine A, Griffith J (1995) p53 and its 14 kDa C-terminal domain recognize primary DNA damage in the form of insertion/deletion mismatches. Cell 81: 1013-1020

    Leveillard T, Andera L, Bissonnette N, Schaeffer L, Bracco L, Egly JM, Wasylyk B (1996) Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations. EMBO J 15: 1615-1624

    Li H, Chang TW, Tsai YC, Chu SF, Wu YY, Tzang BS, Liao CB, Liu YC (2005) Colcemid inhibits the rejoining of the nucleotide excision repair of UVC-induced DNA damages in Chinese hamster ovary cells. Mutat Res 588: 118-128

    Li L, Elledge SJ, Peterson CA, Bales ES, Legerski RJ (1994) Specific association between the human DNA repair proteins XPA and ERCC1. Proc Natl Acad Sci U S A 91: 5012-5016

    Li PY, Chang YC, Tzang BS, Chen CC, Liu YC (2007) Antibiotic amoxicillin induces DNA lesions in mammalian cells possibly via the reactive oxygen species. Mutat Res 629: 133-139

    Liang SH, Clarke MF (1999) The nuclear import of p53 is determined by the presence of a basic domain and its relative position to the nuclear localization signal. Oncogene 18: 2163-2166

    Lloyd RS (2005) Investigations of pyrimidine dimer glycosylases--a paradigm for DNA base excision repair enzymology. Mutat Res 577: 77-91

    Marchenko ND, Hanel W, Li D, Becker K, Reich N, Moll UM (2010) Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-alpha3 binding. Cell Death Differ 17: 255-267

    McArt DG, McKerr G, Howard CV, Saetzler K, Wasson GR (2009) Modelling the comet assay. Biochem Soc Trans 37: 914-917

    Muller PA, Vousden KH, Norman JC (2011) p53 and its mutants in tumor cell migration and invasion. J Cell Biol 192: 209-218

    Nie L, Sasaki M, Maki CG (2007) Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J Biol Chem 282: 14616-14625

    Nigg EA (1996) Cyclin-dependent kinase 7: at the cross-roads of transcription, DNA repair and cell cycle control? Curr Opin Cell Biol 8: 312-317

    Nishiwaki Y, Kobayashi N, Imoto K, Iwamoto TA, Yamamoto A, Katsumi S, Shirai T, Sugiura S, Nakamura Y, Sarasin A, Miyagawa S, Mori T (2004) Trichothiodystrophy fibroblasts are deficient in the repair of ultraviolet-induced cyclobutane pyrimidine dimers and (6-4)photoproducts. J Invest Dermatol 122: 526-532

    Oh KS, Bustin M, Mazur SJ, Appella E, Kraemer KH (2011) UV-induced histone H2AX phosphorylation and DNA damage related proteins accumulate and persist in nucleotide excision repair-deficient XP-B cells. DNA Repair (Amst) 10: 5-15

    Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10: 431-442

    Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2: a001107

    Ozaki T, Nakagawara A (2011) p53: the attractive tumor suppressor in the cancer research field. J Biomed Biotechnol 2011: 603925

    Palomera-Sanchez Z, Zurita M (2011) Open, repair and close again: chromatin dynamics and the response to UV-induced DNA damage. DNA Repair (Amst) 10: 119-125

    Park CH, Mu D, Reardon JT, Sancar A (1995) The general transcription-repair factor TFIIH is recruited to the excision repair complex by the XPA protein independent of the TFIIE transcription factor. J Biol Chem 270: 4896-4902

    Qadri I, Iwahashi M, Simon F (2002) Hepatitis C virus NS5A protein binds TBP and p53, inhibiting their DNA binding and p53 interactions with TBP and ERCC3. Biochim Biophys Acta 1592: 193-204

    Rocha S, Campbell KJ, Roche KC, Perkins ND (2003) The p53-inhibitor pifithrin-alpha inhibits firefly luciferase activity in vivo and in vitro. BMC Mol Biol 4: 9

    Roy R, Schaeffer L, Humbert S, Vermeulen W, Weeda G, Egly JM (1994) The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH. J Biol Chem 269: 9826-9832

    Shivji MK, Podust VN, Hubscher U, Wood RD (1995) Nucleotide excision repair DNA synthesis by DNA polymerase epsilon in the presence of PCNA, RFC, and RPA. Biochemistry 34: 5011-5017

    Smith ML, Ford JM, Hollander MC, Bortnick RA, Amundson SA, Seo YR, Deng CX, Hanawalt PC, Fornace AJ, Jr. (2000) p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 20: 3705-3714

    Spasokukotskaja T, Sasvari-Szekely M, Taljanidisz J, Staub M (1992) Compartmentation of dCTP pools disappears after hydroxyurea or araC treatment in lymphocytes. FEBS Lett 297: 151-154

    Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18: 1660-1672

    Tanaka M, Kimura K, Yoshida S (1985) Mechanism of synergistic cell killing by hydroxyurea and cytosine arabinoside. Jpn J Cancer Res 76: 729-735

    Teufel DP, Bycroft M, Fersht AR (2009) Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene 28: 2112-2118

    Thoma BS, Vasquez KM (2003) Critical DNA damage recognition functions of XPC-hHR23B and XPA-RPA in nucleotide excision repair. Mol Carcinog 38: 1-13

    Titov DV, Gilman B, He QL, Bhat S, Low WK, Dang Y, Smeaton M, Demain AL, Miller PS, Kugel JF, Goodrich JA, Liu JO (2011) XPB, a subunit of TFIIH, is a target of the natural product triptolide. Nat Chem Biol 7: 182-188

    Wang QE, Zhu Q, Wani MA, Wani G, Chen J, Wani AA (2003a) Tumor suppressor p53 dependent recruitment of nucleotide excision repair factors XPC and TFIIH to DNA damage. DNA Repair (Amst) 2: 483-499

    Wang XW, Forrester K, Yeh H, Feitelson MA, Gu JR, Harris CC (1994) Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci U S A 91: 2230-2234

    Wang XW, Yeh H, Schaeffer L, Roy R, Moncollin V, Egly JM, Wang Z, Freidberg EC, Evans MK, Taffe BG, et al. (1995) p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet 10: 188-195

    Wang YH, Tsay YG, Tan BC, Lo WY, Lee SC (2003b) Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J Biol Chem 278: 25568-25576

    Wood RD, Shivji MK (1997) Which DNA polymerases are used for DNA-repair in eukaryotes? Carcinogenesis 18: 605-610

    Yamamoto A, Nakamura Y, Kobayashi N, Iwamoto T, Yoshioka A, Kuniyasu H, Kishimoto T, Mori T (2007) Neurons and astrocytes exhibit lower activities of global genome nucleotide excision repair than do fibroblasts. DNA Repair (Amst) 6: 649-657

    Zhang Y, Xiong Y (2001) A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292: 1910-1915

    Zhao Y, Chen XQ, Du JZ (2009) Cellular adaptation to hypoxia and p53 transcription regulation. J Zhejiang Univ Sci B 10: 404-410

    Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 1: a001883

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE