簡易檢索 / 詳目顯示

研究生: 呂忠諺
Lu, Chung-Yen
論文名稱: 水溶性雙亞硝基鐵硫錯合物及四亞硝基雙鐵硫錯合物的合成與反應機構探討
The Synthetic Water-Soluble Dinitrosyl Iron Complexes (DNICs) and Roussin's Red Esters (RREs)
指導教授: 廖文峯
Liaw, Wen-Feng
口試委員: 蔡易州
Tsai, Yi-Chou
洪嘉呈
Horng, Jia-Cherng
洪政雄
Hung, Chen-Hsiung
李位仁
Lee, Way-Zen
廖文峯
Liaw, Wen-Feng
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 107
中文關鍵詞: 中性四亞硝基雙鐵硫錯合物半胱胺一氧化氮雙亞硝基鐵硫錯合物
外文關鍵詞: RREs, rREE
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 實驗中主要以電子結構為{Fe(NO)2}10的Fe(CO)2(NO)2做為起始物,分別和不同取代基的硫醇化合物半胱胺 (HS(CH2)2NH2)、2-巰基乙醇 (HS(CH2)2OH)及苯硫酚(HS(C5H6))進行反應,探討改變末端官能基的路易士酸鹼性後,對反應機制所造成的影響。反應過程與結果是利用紅外線光譜儀、紫外光/可見光電子吸收光譜儀、電子順磁共振光譜儀、超導量子干涉磁量儀、X光吸收近邊緣結構光譜儀及單晶X光繞射儀等進行鑑定。在反應過程中可觀察到的電子結構為{Fe(NO)2}10-{Fe(NO)2}10並以CO做為橋接基的中性四亞硝基雙鐵硫錯合物,成功得到[(μ-CO)(μ-S(CH2)2NH3)Fe2(NO)4] (1-NH3)及[(μ-CO)(μ-S(CH2)2OH2)Fe2(NO)4] (1-OH2)等利用H+做為陽離子的中性錯合物晶體結構。此結果亦說明相較於苯硫酚,半胱胺與2-巰基乙醇上除了有具有路易士鹼的胺基(-NH2)及醇基(-OH)可助於穩定H+外,且烷基硫醇的推電子能力較好,有利於穩定其錯合物雙鐵中心因橋接CO的π back-bonding的效應所產生較為缺電子的環境。因苯硫酚無上述條件,導致其熱穩定性較差,因此只能觀察到其光譜訊號,而無法得到晶體結構。此外也發現錯合物1-NH3在氧化後和當量半胱胺進行反應後,可成功合成電子結構為{Fe(NO)2}9-{Fe(NO)2}10中性的還原態四亞硝基雙鐵硫錯合物(reduced Roussin’s Red Ester; rRRE) [(μ-S(CH2)2NH2)(μ-S(CH2)2NH3)Fe2(NO)4] (2),此可說明生物體內蛋白質結構中的鐵硫簇錯合物和一氧化氮進行反應後,若有rRRE的結構產生,可利用胺基抓取H+,有效穩定其結構。而rRRE 2的氧化機制除了和氧氣反應後,會生成電子結構為{Fe(NO)2}9-{Fe(NO)2}9 的RRE [(μ-S(CH2)2NH2)2Fe2(NO)4] (3)外,也可藉自身的氧化來還原二硫化二苯(Diphenyl disulfide)並伴隨雙亞硝基鐵硫錯合物(Dinitrosyl Iron complexes; DNICs)的生成,此亦說明蛋白質內rRRE和鄰近雙硫鍵反應的可能性.綜合上述結論,其結果可說明經由Fe(CO)2(NO)2與硫醇基團(HSR)反應生成電子結構為{Fe(NO)2}9-{Fe(NO)2}9 RRE的過程,並不是由metal-hydride的氧化加成並伴隨還原脫去產生氫氣的路徑,而是取代基與效應伴隨著氧化脫水的結果:{Fe(NO)2}10-{Fe(NO)2}10 [(μ-CO)(μ-SR)Fe2(NO)4] ‒ → {Fe(NO)2}9-{Fe(NO)2}10 [(μ-SR)2Fe2(NO)4]‒ → {Fe(NO)2}9-{Fe(NO)2}9 [(μ-SR)2Fe2(NO)4]。此外也利用RRE 3和上述硫醇化合物再次進行反應,可精準的合成一系列電子組態{Fe(NO)2}9的不對稱雙亞硝基鐵硫錯合物DNICs,並進一步形成不對稱的rRRE結構,而其中2-巰基乙醇及半胱氨酸取代的不對稱DNICs,因具有良好的水溶性,故可進一步做為後續心血管與腫瘤等生化相關研究的起始材料。


    Transformation of {Fe(NO)2}10 dinitrosyl iron complex (DNIC) Fe(CO)2(NO)2 into [{Fe(NO)2}9]2 Roussin’s red ester (RRE) [(μ-S(CH2)2NH2)Fe(NO)2]2 (3) triggered by cysteamine via the reaction pathway (intermediates) [{Fe(NO)2}10]2 [(NO)2Fe(μ-CO)(μ-S(CH2)2NH3)Fe(NO)2] (1-NH3) → {Fe(NO)2}9-{Fe(NO)2}10 [(NO)2Fe(μ-S(CH2)2NH2)(μ-S(CH2)2NH3)Fe(NO)2] (2) → RRE 3 was demonstrated. The 1-NH3-to-¬2-to-3 conversion is promoted by proton transfer followed by O2 oxidation and deprotonation. Additionally, study on facile conversion of complex 3 to complexes [(SR)(S(CH2)2NH3)Fe(NO)2] (SR = 2-aminoethanethiolate (4), benzenethiolate (6)) and [(CysS))(S(CH2)2NH3)Fe(NO)2] (7) via reacting with thiols and the further utility of complex 6 as a template for synthesizing mixed-thiolate-containing rRRE [(μ-SC6H5)(μ-S(CH2)2NH3)Fe2(NO)4] (9) provide the methodology for syntheses and isolation of neutral, pure cysteine-/mixed-thiolate- containing DNIC/RRE. Compared to the conversion of complex 2 to complex 3 via reacting with O2, diphenyl disulfide triggered the oxidation of complex 2 to lead to the formation of the neutral {Fe(NO)2}9 DNIC 6 and RRE 3. S–S bond activation of diphenyl disulfide by reduced RRE 2 (rRRE) may support the decay (oxidation) of rRRE species in ToMOC via the reduction of adjacent protein residues such as cystins, proposed by Lippard.

    Table of Contents Chapter One: Introduction. 1 1-1. Multi-Function of Nitric Oxide 1 1-2. Physical / Chemical Properties of NO and Nitrosyl Metal Complexes. 2 1-3. Nitric Oxide Biosynthesis. 5 1-4. The Role of Nitric Oxide in Tumor. 8 1-5. Storage and Transportation of NO in Biology. 10 1-6. Nitrosyl Iron Complexes Containing Cysteamine Ligand. 18 1-7. Study on the RREs Formation Pathways via Reaction of Fe(CO)2(NO)2 and Thiols: the Synthetic Route for Synthesizing Neutral Mixed-Thiolate Containing DNICs/RRE/rRREs. 22 Chapter Two: Experimental Section. 25 General Procedures: 25 Preparation of [(μ-CO)(μ-L)Fe2(NO)4] (L = -S(CH2)2NH3 (1-NH3), L = S(CH2)2OH2 (1-OH2)). 26 Preparation of [(NO)2Fe(μ-S(CH2)2NH2)(μ-S(CH2)2NH3)Fe(NO)2] (2). 27 Reaction of Complex 2 and O2. 29 Preparation of [(S(CH2)2NH2)(S(CH2)2NH3)Fe(NO)2] (4). 29 Preparation of [(S(CH2)2OH)(S(CH2)2NH3)Fe(NO)2] (5). 30 Reaction of Complex 5 and Half Equiv of [HS(CH2)]2 (5-1). 31 Preparation of the Neutral DNIC [(SC6H5)(S(CH2)2NH3)Fe(NO)2] (6). 32 Reaction of Complex 2 and Diphenyl Disulfide. 32 Preparation of [(SC2H3(CO2)(NH3))(S(CH2)2NH3)Fe(NO)2] (7). 33 Preparation of the Neutral Mixed-Thiolate rRRE [(μ-L)(μ-S(CH2)2NH3)Fe2(NO)4] (L= -S(CH2)2OH (8), L= -S(C5H6) (9)). 34 Oxidation of Complex 9 Forming the Neutral Asymmetric [{Fe(NO)2}9]2 RRE [(μ-SC6H5)(μ-S(CH2)2NH2)Fe2(NO)4] (10). 35 Preparation of {Fe(NO)2}10 DNIC [PPN][(CO)(SCN)Fe(NO)2] (11). 36 Preparation of {Fe(NO)2}9 DNIC [PPN][(SCN)2Fe(NO)2] (12). 36 EPR Spectroscopy. 37 Magnetic Measurements. 39 XAS Measurements. 39 X-ray Crystallography. 40 Chapter Three: Results and Discussion 51 3-1. Preparation of the Neutral [{Fe(NO)2}10]2 Mixed-CO-Thiolate-Bridging RREs [(μ-CO)(μ-SR)Fe2(NO)4] (R = -(CH2)2NH3 (1-NH3); R = -(CH2)2OH2 (1-OH2)). 51 3-2. Conversion of the Neutral [{Fe(NO)2}10]2 Mixed-CO-Thiolate-Bridged RRE 1-NH3 to Neutral {Fe(NO)2}9-{Fe(NO)2}10 Mixed-Valence and Mixed-Thiolate Containing rRRE [(μ-S(CH2)2NH2)(μ-S(CH2)2NH3)Fe2(NO)4] (2) . 58 3-3. Synthesis of the Neutral [{Fe(NO)2}9]2 Thiolate-Containing RRE [(μ-S(CH2)2NH2)Fe (NO)2]2 (3) via Oxidation of Complex 2 by O2. 64 3-4. Synthesis of the Neutral {Fe(NO)2}9 Mixed-Thiolate-Containing DNICs [(S(R)(S(CH2)2NH3)Fe(NO)2] (R = -(CH2)2NH2 (4); -(CH2)2OH (5); -C6H5 (6)). 67 3-5. The Chelate Effect of 1.2-Ethanedithiol for Neutral DNIC 5 and RRE 3. 73 3-6. Reactivity Study of the Reduced-Form RRE (rRRE) 2. 76 3-7. Synthesis of Water-Soluble Neutral Cysteine-Containing DNIC [(SCys)(S(CH2)2NH3)Fe(NO)2] (7). 78 3-8. Preparation of the Mixed-Thiolate-Containing Reduced-Form RREs (rRREs): [(μ-SR)(μ-S(CH2)2NH3)Fe2(NO)4] (R = -(CH2)2OH (8); R = -C6H5 (9)). 82 3-9. The Half Maximal Inhibitory Concentration (IC50) for the Water Soluble Complex 5 toward Cancer Cell Lines: Non-Small Cell Lung Cancer (NSCLC: CRL-5889 and CRL-5866), Prostate Cancer Cell (PC3) and Breast Cancer Cell (SKBR3). 86 3-10. Preparation of {Fe(NO)2}10 DNIC [PPN] [(CO)(SCN)Fe(NO)2] (11). 93 3-11. Conclusion 100 Chapter Four: References 103 List of Figures Figure 1-1-1. Mulitifaceted biological effects of nitric oxide. 1 Figure 1-2-1. Molecular orbitals diagram of nitric oxide. 2 Figure 1-3-1. Overall reaction catalysed and cofactors of NOS. 6 Figure 1-3-2. Important functions of the different NOS isoforms. 7 Figure 1-4-1. The concentration of NO has been suggested to be responsible for cell proliferation and death. 9 Figure 1-4-2. Mechanisms and influences of NO in tumour cells. 10 Figure 1-5-1. The structures of CysNO and GSNO. 11 Figure 1-5-2. The Synthesis mechanism of the DNDGIC-bound GST P1-1(left) and crystal structure (right). 13 Figure 1-5-3. The anionic, neutral and cationic forms of {Fe(NO)2}9 DNICs and [{Fe(NO)2}9-{Fe(NO)2}9] RREs. 16 Figure 1-5-4. The anionic and dianionic form of RREs and the neutral form DNICs with {Fe(NO)2}10 motif. 17 Figure 1-5-5. The single crystal of aionic RRE [Fe(μ-StBu)(NO)2]2-. 18 Figure 1-6-1. The structure (left) and single crystal of Fe(LH)(NO)2 with tetradentate N2S2 ligand (L= N,N’-dimethyl-N,N’-bis(2-mercaptoethyl)-l,3-propanediamine) (right). 20 Figure 1-6-2. X-ray structures of the dications [(S(CH2)2NH3)Fe(NO)2]22+ showing the atom labeling scheme and 50% probability thermal ellipsoids (left), and the packing construction in aqueous solution (right). 21 Figure 3-1-1. IR spectrum of complex [(μ-CO)(μ-S(CH2)2OH2)Fe2(NO)4] (1-OH2) with stretching frequencies at 1689 s, 1700 s (νNO), 1843 s (νCO) cm-1 in THF solution. The IR stretching frequencies 1749 s, 1775 s, 1809 w (νNO) cm-1 assigning as RRE [(μ-S(CH2)2OH)2Fe2(NO)4] was produced via oxidation of complex 1-OH2. 52 Figure 3-1-2. IR stretching frequencies 1693 s, 1707 s (νNO), and 1851 m (νCO) cm-1 (THF) shows the formation of complex 1-NH3. 53 Figure 3-1-3. 1H NMR (500 MHz; d8-THF) of complex 1-NH3: δ 2.47 (s, 1H (-SH)), 2.60 (t, 2H (-CH2)), 3.09 (t, 2H (-CH2)), 7.31 (s, 3H (-NH3)) ppm. 18-crown-6-ether (δ 3.67 ppm). H grease (br s, δ 1.29 ppm, m, δ 0.89 ppm). 54 Figure 3-1-4. ORTEP drawing and labeling scheme of complex 1-NH3 with thermal ellipsoids drawn at 30% probability. Selected bond lengths (Å) and angles (deg). 55 Figure 3-1-5. ORTEP drawing and labeling scheme of complex 1-OH2 with thermal ellipsoids drawn at 30% probability. Selected bond lengths (Å) and angles (deg). 55 Figure 3-2-1. FT-IR spectrum of complex [(μ-SC2H4NH2)(μ-SC2H4NH3)Fe2(NO)4] (2) with νNO stretching frequencies at 1658 s, 1678 s cm-1 (THF). 59 Figure 3-2-2. 2H NMR (500 MHz; THF) of DHO (δ 2.56 ppm) obtained from reaction of complex 1-NH3, d-cysteamine (DS(CH2)2NH2) and O2 in a 1 : 1 : 0.25 molar ratio in THF. The THF solvent containing DHO was trapped by liquid nitrogen under vacuum. The trapped DHO in THF was identified by 2H NMR spectroscopy [(2H NMR; THF): δ 2.56 (DHO) vs δ 5.32 (CD2Cl2)]. 60 Figure 3-2-3. Time-tracing UV-Vis spectrum was detected per minute that showed the reaction of 10-4 M cysteamine was added into one equiv of complex 1-NH3 (10-4 M) and quartered equiv of O2 under N2 condition at 298K. 61 Figure 3-2-4. EPR spectra of complex 2 in THF (a) at 298 K (gav = 1.998), and (b) at 77 K (g⊥ = 2.011, g∥ = 1.968). 62 Figure 3-2-5. The µeff vs T plot of complex 2 under 0.5 Tesla applied field. 62 Figure 3-2-6. ORTEP drawing and labeling scheme of complex 2 with thermal ellipsoids drawn at 30% probability. Selected bond lengths (Å) and angles (deg). 63 Figure 3-3-1. IR stretching frequencies 1749 s, 1774 s, 1808 w cm-1 (THF) shows the formation of complex 3. 65 Figure 3-3-2. UV-Vis spectrum of complex 3 in THF [nm, λmax (M-1 cm-1, ε)]: 307 (19070), 358 (11880). 66 Figure 3-3-3. 1H NMR spectrum (400 MHz; d8-THF) of complex 3: δ 1.12 (br), 1.77 (br), 3.38 (br) ppm (-CH2CH2NH2). 66 Figure 3-4-1. FT-IR spectra of (a) neutral mixed-thiolate containing DNIC [(S(CH2)2NH2)(S(CH2)2NH3)Fe(NO)2] (4) with νNO stretching frequencies at 1685 s, 1731 s cm-1 (THF), (b) [(SC2H4OH)(SC2H4NH3)Fe(NO)2] (5) with νNO stretching frequencies at 1688 s, 1733 s cm-1 (THF), and (c) [(SC6H5)(S(CH2)2NH3)Fe(NO)2] (6) with νNO stretching frequencies at 1693 s, 1739 s cm-1 (THF). 68 Figure 3-4-2. EPR spectra indicated the principal pattern for complex 4 in MeOH: (a) gav = 2.029 at 298 K (left); g1 = 2.039, g2 = 2.029 and g3 = 2.014 at 77 K in MeOH, (b) complex 5 in THF: gav = 2.029 at 298 K (left); g1 = 2.038, g2 = 2.027 and g3 = 2.016 at 77 K (right) and (c) complex 6 in THF: gav = 2.028 at 298 K (left); g1 = 2.034, g2 = 2.026 and g3 = 2.019 at 77 K (right). 70 Figure 3-4-3. ORTEP drawing and labeling scheme of complex 4 with thermal ellipsoids drawn at 30% probability. Selected bond lengths (Å) and angles (deg). 71 Figure 3-4-4. ORTEP drawing and labeling scheme of complex 5 with thermal ellipsoids drawn at 30% probability. Selected bond lengths (Å) and angles (deg). 71 Figure 3-4-5. ORTEP drawing and labeling scheme of complex 6 with thermal ellipsoids drawn at 30% probability. Selected bond lengths (Å) and angles (deg). 72 Figure 3-5-1. The IR spectra of (a) complex 5-1 displayed the stretching frequencies at 1699 cm-1 (THF); (b) the reaction of RRE 3 and 1.2-ethanedithiol showed the stretching frequencies at 1681 s, 1721 s cm-1 (THF). 74 Figure 3-5-2. ORTEP drawing and labeling scheme of complex 5 with thermal ellipsoids drawn at 30% probability. Selected bond lengths (Å) and angles (deg). 75 Figure 3-5-3. The UV-Vis spectrum of complex 5-1 in THF shows absorbed bands at 312 (7865), 366 (3410), 587 (415) M-1 cm-1 (ε). 76 Figure 3-6-1. The normalized absorbing bands of IR spectrum indicates the reaction of complex 2 and diphenyl disulfide producing complex 6 accompanied by the formation of complex 3 (red line: complex 3; black line: complex 6; Blue line: complexes 3 and 6). 77 Figure 3-7-1. Aqueous IR spectrum (1719 s, 1770 s (νNO) cm-1 (D2O)) of complex 7. 79 Figure 3-7-2. Aqueous UV-Vis spectrum of complex 7 with absorption band at 378 (5240) M-1 cm-1 (ε). 80 Figure 3-7-3. EPR spectra of complex 7 in H2O (a) at 298 K (gav = 2.03, AN(NO) = 2.36 G, AH(Cys) = 1.15 G and AH(cysteamine) = 1.45 G), and (b) at 77 K (g1 = 2.038, g2 = 2.030 and g3 = 2.021). 81 Figure 3-8-1. The normalized IR stretching frequencies 1658 s, 1679 s and 1665 s, 1685 s νNO cm-1 (THF) indicated the formation of complex 8 (black line) and complex 9 (red line) respectively. 83 Figure 3-8-2. (a) The EPR spectra of complex 8 revealed gav = 1.998 at 298 K (left) and g1 = 2.011, g2 = 2.000 and g3 = 1.970 at 77 K (right) in THF; (b) complex 9 revealed gav = 1.999 at 298 K (left) and g1 = 2.010, g2 = 1.999 and g3 = 1.972 at 77 K (right) in THF. 84 Figure 3-8-3. Fe K-edge spectra of (a) complex 8 shows the pre-edge energy at 7113.3 eV and (b) complex 9 shows the pre-edge energy at 7113.4 eV. 85 Figure 3-8-4. The IR spectrum of RRE 10 indicated that the stretching frequencies 1754 s, 1780 s, 1812 w cm-1 (red line) in THF compared with [(NO)2Fe(μ-SPh)]2 (IR νNO: 1757 s, 1784 s, 1814 vw cm-1 (THF) (black line) and complex 3 (IR νNO: 1749 s, 1774 s, 1808 vw cm-1 (THF) (blue line)). 86 Figure 3-9-1. Organic nitrate (GNT) and the RSNO compounds (SANP and GSNO). 87 Figure 3-9-2. Percent viability of cell growth vs concentration of Lu-2 on prostate cancer cell PC-3. 89 Figure 3-9-3. Percent viability of cell growth vs. concentration of Lu-2 on breast cancer cell SKBR-3. 89 Figure 3-9-4. Percent viability of cell growth vs. concentration of Lu-2 on Lung cancer cell CRL5866. 90 Figure 3-9-5. Percent viability of cell growth vs. concentration of Lu-2 on Lung cancer cell CRL5889. 90 Figure 3-9-6. PC-3 cell proliferation as a function of DNIC concentration. Cells were incubated with different doses of DNIC ligands and were assayed at 24 hour using the MTT reagent. 91 Figure 3-9-7. SKBR-3 cell proliferation as a function of DNIC concentration. Cells were incubated with different doses of DNIC ligands and were assayed at 24 hour using the MTT reagent. 92 Figure 3-9-8. CRL5866 cell proliferation as a function of DNIC concentration. Cells were incubated with different doses of DNIC ligands and were assayed at 24 hour using the MTT reagent. 92 Figure 3-9-9. CRL5889 cell proliferation as a function of DNIC concentration. Cells were incubated with different doses of DNIC ligands and were assayed at 24 hour using the MTT reagent. 93 Figure 3-10-1. The IR spectrum of complex 11 displays the stretching frequencies at 1735 s, 1688 s (υNO), 1986 s (υCO) and 2098 s (υSCN) cm-1 (THF). 94 Figure 3-10-2. The UV-Vis spectrum of complex 11 in THF shows absorption bands at 312 (7865), 366 (3410), 587 (415) M-1 cm-1 (ε). 94 Figure 3-10-3. ORTEP drawing and labeling scheme of complex 11 with thermal ellipsoids drawn at 30% probability. Selected bond lengths (Å) and angles (deg). 95 Figure 3-10-4. The IR stretching frequencies 1718 s, 1786 s (υNO), 2054 s, 2076 s (υSCN) cm-1 (THF) indicated the formation of complex 12. 97 Figure 3-10-5. ORTEP drawing and labeling scheme of complex 12 with thermal ellipsoids drawn at 30% probability. Selected bond lengths (Å) and angles (deg). 98 Figure 3-10-6. EPR spectra of complex 12 in THF (a) at 298 K (gav = 2.032), and (b) at 77 K (g1 = 2.038, g2 = 2.027 and g3 = 2.016). 99 Figure 3-10-7. The UV-Vis spectrum of complex 12 in THF shows absorbed bands at 257 (10280), 400 (3675), 709 (270) M-1 cm-1 (ε). 99 List of Tables Table 1-2-1. Physical properties of nitrogen monoxides. 3 Table 1-5-1. List of the reported protein-bound DNICs based on EPR spectra. 14 Table 2-1. Crystal data and structure refinement for complex 1-NH3. 42 Table 2-2. Crystal data and structure refinement for complex 1-OH2. 43 Table 2-3. Crystal data and structure refinement for complex 2. 44 Table 2-4. Crystal data and structure refinement for complex 4. 45 Table 2-5. Crystal data and structure refinement for complex 5. 46 Table 2-6. Crystal data and structure refinement for complex 5-1. 47 Table 2-7. Crystal data and structure refinement for complex 6. 48 Table 2-8. Crystal data and structure refinement for complex 11. 49 Table 2-9. Crystal data and structure refinement for complex 12. 50 Table 3-1-1. Selected bond lengths (Å) of the [{Fe(NO)2}9]2 RRE, reduced-form {Fe(NO)2}9-{Fe(NO)2}10 RREs and di-reduced-form [{Fe(NO)2}10]2 RREs. 58

    1. Koshland, D. E. J., Science 1992, 258, 1861.
    2. Rosselli, M.; Keller, P. J.; Dubey, R. K., Hum. Reprod. 1998, 4, 3-24.
    3. Szaciłowski, K.; Chmura, A.; Stasicka, Z., Coord. Chem. Rev. 2005, 249, 2408-2436.
    4. Stamler, J. S.; Singel, D. J.; Loscalzo, J., Science 1992, 258 1898-1902.
    5. (a) Bartberger, M. D.; Liu, W.; Ford, E.; Miranda, K. M.; Switzer, C.; Fukuto, J. M.; Farmer, P. J.; Wink, D. A.; Houk, K. N., Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 10958-10963; (b) Connelly, N. G.; Geiger, W. E., Chem. Rev. 1996, 96, 877-910.
    6. McCleverty, J. A., Chem. Rev. 2004, 104, 403-418.
    7. Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Chen, J.-M.; Lee, J.-F.; Liaw, W.-F., Inorg. Chem. 2004, 43, 5159-5167.
    8. Stuehr, D. J., Biochim. Biophys. Acta 1999, 1411, 217-230.
    9. (a) Alderton, W. K.; Cooper, C. E.; Knowles, R. G., Biochem. J. 2001, 357, 593-615; (b) Daff, S., Nitric Oxide 2010, 23, 1-11.
    10. Zhang, S.; Chen, J.; Wang, S., Brain Res. 1998, 801, 101-106.
    11. (a) Shesely, E. G.; Maeda, N.; Kim, H.-S.; Desai, K. M.; Krege, J. H.; Laubach, V. E.; Sherman, P. A.; Sessa, W. C.; Smithies, O., Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 13176-13181; (b) Huang, P.-L.; Huang, Z.; Mashimo, H.; Bloch, K. D.; Moskowitz, M. A.; Bevan, J. A.; Fishman, M. C., Nature 1995, 377, 239-242.
    12. Ridnour, L. A.; Thomas, D. D.; Switzer, C.; Flores-Santana, W.; Isenberg, J. S.; Ambs, S.; Roberts, D. D.; Wink, D. A., Nitric Oxide 2008, 19, 73-76.
    13. Sonveaux, P.; Jordan, B. F.; Gallez, B.; Feron, O., Eur. J. Cancer 2009, 45, 1352-1369.
    14. Park, S. J.; Ahn, T. S.; Cho, S. W.; Kim, C. J.; Jung, D. J.; Son, M. W.; Bae, S. H.; Shin, E. J.; Lee, M. S.; Kim, C. H.; Baek, M. J., J. Korean Soc. Coloproctol. 2012, 28, 27-34.
    15. Huerta, S.; Chilka, S., Int. J. Oncol. 2008, 33, 909-927.
    16. Fukumura, D.; Kashiwagi, S.; Jain, R. K., Nat. Rev. Cancer 2006, 6, 521-534.
    17. (a) Chiang, C. Y.; Darensbourg, M. Y., J. Biol. Inorg. Chem. 2006, 11, 359-370; (b) Tsai, M. L.; Liaw, W. F., Inorg. Chem. 2006, 45, 6583-6585.
    18. (a) Singh, S. P.; Wishnok, J. S.; Keshive, M.; Deen, W. M.; Tannenbaum, S. R., Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 14428-14433; (b) Hao, G.; Derakhshan, B.; Shi, L.; Campagne, F.; Gross, S. S., Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 1012-1017.
    19. (a) Grossi, L.; Montevecchi, P. C., Chem. Eur. J. 2002, 8, 380-387; (b) Wang, P.-G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J., Chem. Rev. 2002, 102, 1091-1134.
    20. (a) Al-Sa'doni, H.; Ferro, A., Clin. Sci. 2000, 98, 507-520; (b) Stubauer, G.; Giuffrè, A.; Sarti, P., J. Biol. Chem. 1999, 274, 28128-28133.
    21. McDonald, C. C.; Phillips, W. D.; Mower, H. F., J. Am. Chem. Soc. 1965, 87, 3319-3326.
    22. Suryo Rahmanto, Y.; Kalinowski, D. S.; Lane, D. J.; Lok, H. C.; Richardson, V.; Richardson, D. R., J. Biol. Chem. 2012, 287, 6960-6968.
    23. (a) Landry, A. P.; Duan, X.; Huang, H.; Ding, H., Free Radic Biol. Med. 2011, 50, 1582-1590; (b) Vanin, A. F., Nitric Oxide 2009, 21, 1-13.
    24. (a) Mülsch, A.; Mordvintcev, P.; Vanin, A. F.; Busse, R., FEBS LETT. 1991, 249, 252-256; (b) Severina, I. S.; Bussygina, O. G.; Pyatakova, N. V.; Malenkova, I. V.; Vanin, A. F., Nitric Oxide 2003, 8, 155-163.
    25. Vanin, A. F.; Serezhenkov, V. A.; Mikoyan, V. D.; Genkin, M. V., Nitric oxide 1998, 2, 224-234.
    26. Cesareo, E.; Parker, L. J.; Pedersen, J. Z.; Nuccetelli, M.; Mazzetti, A. P.; Pastore, A.; Federici, G.; Caccuri, A. M.; Ricci, G.; Adams, J. J.; Parker, M. W.; Lo Bello, M., J. Biol. Chem. 2005, 280, 42172-42180.
    27. Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R. M., J. Biol. Chem. 1995, 270, 29244-29249.
    28. Sellers, V. M.; Johnson, M. K.; Dailey, H. A., Biochemistry 1996, 35, 2699-2704.
    29. Cruz-Ramos, H.; Crack, J.; Wu, G.; Hughes, M. N.; Scott, C.; Thomson, A. J.; Green, J.; Poole, R. K., EMBO J. 2002, 21, 3235-3244.
    30. Lee, M.; Arosio, P.; Cozzi, A.; Chasteen, N. D., Biochemistry 1994, 33, 3679-3687.
    31. Kennedy, M. C.; Antholine, W. E.; Beinert, H., J. Biol. Chem. 1997, 272 20340-20347.
    32. Welter, R.; Yu, L.; Yu, C.-A., Arch. Biochem. Biophys. 1996, 331, 9-14.
    33. Pedersen, J. Z.; De Maria, F.; Turella, P.; Federici, G.; Mattei, M.; Fabrini, R.; Dawood, K. F.; Massimi, M.; Caccuri, A. M.; Ricci, G., J Biol Chem 2007, 282, 6364-6371.
    34. Branca, M.; Culeddu, N.; Fruianu, M.; Marchettini, N.; Tiezzi, E., Magn. Reson. Chem. 1997, 35, 687-690.
    35. Tsou, C.-C.; Lu, T.-T.; Liaw, W.-F., J. Am. Chem. Soc. 2007, 129, 12626-12627.
    36. Tonzetich, Z. J.; McQuade, L. E.; Lippard, S. J., Inorg. Chem. 2010, 49, 6338-6348.
    37. Tsai, M.-C.; Tsai, F.-T.; Lu, T.-T.; Tsai, M.-L.; Wei, Y.-C.; Hsu, I.-J.; Lee, J.-F.; Liaw, W.-F., Inorg. Chem. 2009, 48, 9579-9591.
    38. Dahl, L. F.; de Gil, E. R.; Felthamlb, R. D., J. Am. Chem. Soc. 1969, 91, 1653-1664.
    39. Crack, J. C.; Smith, L. J.; Stapleton, M. R.; Peck, J.; Watmough, N. J.; Buttner, M. J.; Buxton, R. S.; Green, J.; Oganesyan, V. S.; Thomson, A. J.; Le Brun, N. E., J. Am. Chem. Soc. 2011, 133, 1112-1121.
    40. (a) Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F., Inorg. Chem. 2006, 45, 6041-6047; (b) Yeh, S.-W.; Lin, C.-W.; Li, Y.-W.; Hsu, I.-J.; Chen, C.-H.; Jang, L.-Y.; Lee, J.-F.; Liaw, W.-F., Inorg. Chem. 2012, 51, 4076-4087.
    41. Tinberg, C. E.; Tonzetich, Z. J.; Wang, H.; Do, L. H.; Yoda, Y.; Cramer, S. P.; Lippard, S. J., J. Am. Chem. Soc. 2010, 132, 18168-18176.
    42. Lu, T.-T.; Tsou, C.-C.; Huang, H.-W.; Hsu, I.-J.; Chen, J.-M.; Kuo, T.-S.; Wang, Y.; Liaw, W.-F., Inorg. Chem. 2008, 47, 6040-6050.
    43. (a) Miller, S. L.; Schlesinger, G., J. Mol. Evol. 1993, 36, 302-307; (b) Stipanuk, M. H., Ann. Rev. Nutr. 1986, 6, 179-209.
    44. (a) Aruoma, O. I.; Halliwell, B.; Hoey, B. M.; Butler, J., Biochem. J. 1988, 256, 251-255; (b) Bacq, Z. M.; Dechamps, G.; Fischer, P.; Herve, A.; Le Bihan, H.; Lecomte, J.; Pirotte, M.; Rayet, P., Science 1953, 117, 633-636; (c) Ambroż, H. B.; Kornacka, E. M.; Przybytniak, G. K., Radiat. Phys. Chem. 2004, 70, 677-686; (d) Rudneva, T. N.; Sanina, N. A.; Lyssenko, K. A.; Aldoshin, S. M.; Antipin, M. Y.; Ovanesyan, N. S., Mendeleev Commun. 2009, 19, 253-255.
    45. (a) Wan, X. M.; Zheng, F.; Zhang, L.; Miao, Y. Y.; Man, N.; Wen, L. P., Int. J. Cancer 2011, 129, 1087-95; (b) Jeitner, T. M.; Renton, F. J., Cancer Lett. 1996, 103, 85-90.
    46. (a) Ddeoglu, A.; Kubilus, J. K.; Jeitner, T. M.; Matson, S. A.; Bogdanov, M.; Kowall, N. W.; Matson, W. R.; Cooper, A. J.; Ratan, R. R.; Beal, M. F.; Hersch, S. M.; Ferrante, R. J., J. Neurosci. 2002 22, 8942-8950; (b) Dohil, R.; Gangoiti, J. A.; Cabrera, B. L.; Fidler, M.; Schneider, J. A.; Barshop, B. A., J. Pediatr 2010, 156, 823-827; (c) Min-Oo, G.; Fortin, A.; Poulin, J. F.; Gros, P., Antimicrob. Agents Chemother. 2010, 54, 3262-3270.
    47. (a) Fleischer, H.; Dienes, Y.; Mathiasch, B.; Schmitt, V.; Schollmeyer, D., Inorg. Chem. 2005, 44, 8087-8096; (b) Kretschmer, R.; Gessner, G.; Gorls, H.; Heinemann, S. H.; Westerhausen, M., J. Inorg. Biochem. 2011, 105, 6-9; (c) Raorane, D. A.; Lim, M. D.; Chen, F. F.; Craik, C. S.; Majumdar, A., Nano Lett. 2008, 8, 2968-2974.
    48. Riauba, L.; Niaura, G.; Eicher-Lorka, O.; Butkus, E., J. Phys. Chem. A. 2006, 110, 13394-13404.
    49. (a) Wecksler, S. R.; Hutchinson, J.; Ford, P. C., Inorg. Chem. 2006, 45, 1192-1200; (b) Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F., Inorg. Chem. 2006, 45, 6041-6047; (c) Wecksler, S. R.; Mikhailovsky, A.; Korystov, D.; Buller, F.; Kannan, R.; Tan, L.-S.; Ford, P. C., Inorg. Chem. 2007, 46, 395-402.
    50. Vanin, A. F.; Mokh, V. P.; Serezhenkov, V. A.; Chazov, E. I., Nitric Oxide 2007, 16, 322-330.
    51. (a) Klein, A.; Mering, Y. V.; Uthe, A.; Butsch, K.; Schaniel, D.; Mockus, N.; Woike, T., Polyhedron 2010, 29, 2553-2559; (b) Hedberg, L.; Hedberg, K.; Satija, S. K.; Swanson, B. I., Inorg. Chem. 1985, 24, 2766-2771.
    52. Bain, G. A.; Berry, J. F., J. Chem. Educ. 2008, 85, 532-536.
    53. Solomon, E. I.; Hedman, B.; Hodgson, K. O.; Dey, A.; Szilagyi, R. K., Coord. Chem. Rev. 2005, 249, 97-129.
    54. (a) Chen, Y.-J.; Ku, W.-C.; Feng, L.-T.; Tsai, M.-L.; Hsieh, C.-H.; Hsu, W.-H.; Liaw, W.-F.; Hung, C.-H.; Chen, Y.-J., J. Am. Chem. Soc. 2008, 130, 10929-10938; (b) Wang, R.; Camacho-Fernandez, M. A.; Xu, W.; Zhang, J.; Li, L., Dalton Trans. 2009, 5, 777-786; (c) Hayter, R. G.; Williams, L. F., Inorg. Chem. 1964, 3, 717-719.
    55. Chen, C.-H.; Chiou, S.-J.; Chen, H.-Y., Inorg. Chem. 2010, 49, 2023-2025.
    56. Ueyama, N.; Nishikawa, M.; Yamada, Y.; Okamura, T.; Nakamura, A., J. Am. Chem. Soc. 1996, 118, 12826-12827.
    57. Harrop, T. C.; Song, D.; Lippard, S. J., J. Am. Chem. Soc. 2006, 128, 3528-3529.
    58. (a) Harrop, T. C.; Song, D.; Lippard, S. J., J. Inorg. Biochem. 2007, 101, 1730-1738; (b) Dillinger, S. A. T.; Schmalle, H. W.; Fox, T.; Berke, H., Dalton Trans. 2007, 32, 3562-3571; (c) Costanzo, S.; Ménage, S.; Purrello, R.; Bonomo, R. P.; Fontecave, M., Inorg. Chim. Acta. 2001, 318, 1-7; (d) Tsou, C.-C.; Tsai, F.-T.; Chen, H.-Y.; Hsu, I.-J.; Liaw, W.-F., 2013, 52.
    59. Funahashi, J.; Takano, K.; Yamagata, Y.; Yutani, K., J. Biol. Chem. 2002, 277, 21792-21800.
    60. Shih, W.-C.; Lu, T.-T.; Yang, L.-B.; Tsai, F.-T.; Chiang, M.-H.; Lee, J.-F.; Chiang, Y.-W.; Liaw, W.-F., J. Inorg. Biochem. 2012, 113, 83-93.
    61. (a) Lin, Z.-S.; Lo, F.-C.; Li, C.-H.; Chen, C.-H.; Huang, W.-N.; Hsu, I.-J.; Lee, J.-F.; Horng, J.-C.; Liaw, W.-F., Inorg. Chem. 2011, 50, 10417-10431; (b) Huang, H.-W.; Tsou, C.-C.; Kuo, T.-S.; Liaw, W.-F., Inorg. Chem. 2008, 47, 2196-2204.
    62. McDonald, C.-C.; Phillips, W. D.; Mower, H. F., J. Am. Chem. Soc. 1965, 87, 3319-3326.
    63. Berridge, M. V.; Herst, P. M.; Tan, A. S., Biotechnol. Annu. Rev. 2005, 11, 127-152.
    64. Lequin, R. M., Clin. Chem. 2005, 51, 2415-2418.
    65. Cheng, Y.-C.; Prusoff, W. H., Biochem. Pharmacol. 1973, 22, 3099-3108.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE