簡易檢索 / 詳目顯示

研究生: 陳怡卉
論文名稱: 第二十三型絲胺酸蛋白酶於心臟發育之研究
Investigation on the role of PRSS23 in Heart Development
指導教授: 莊永仁
口試委員: 吳華林
葉宏一
黃聲蘋
王學孝
莊永仁
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 107
中文關鍵詞: 第二十三型絲胺酸蛋白酶Snail內皮至間葉細胞形態的轉化心臟瓣膜發育心室心房結構發育斑馬魚
外文關鍵詞: PRSS23, Snail, EndoMT, Cardiac valve formation, Cardiac looping, Zebrafish
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在胚胎心臟發育的過程中,心臟腔室的發育是極為重要的過程,其包含了心室心房結構的發育(cardiac looping)及心臟瓣膜的發育(cardiac valve formation),在這過程中,各種的酵素參與其中,然而此調控機制複雜且多變,有許多細節尚待釐清;第二十三型絲胺酸蛋白酶(PRSS23)為表現在血管內皮細胞中的新穎絲胺酸蛋白酶,在先前的研究指出,第二十三型絲胺酸蛋白酶會大量表現在小鼠心臟發育時期的心室、心房以及心臟瓣膜,但其功能卻不明瞭。本篇論文主要在了解在心臟發育過程中第二十三型絲胺酸蛋白酶所扮演的腳色為何。
    我們利用分別在血管及心臟會表現綠色螢光蛋白的轉殖基因魚作為研究的動物模式系統。首先,我們取得與人類第二十三型絲胺酸蛋白酶同源的斑馬魚第二十三型絲胺酸蛋白酶基因;然後利用全覆式原位雜交(whole-mount in situ hybridization)觀察到在斑馬魚胚胎發育過程中,第二十三型絲胺酸蛋白酶會表現在心室、心房與心室心房交接的瓣膜發育位置;利用反義寡核甘酸(morpholino oligonucleotide)抑制第二十三型絲胺酸蛋白酶的蛋白質表現後,發現其會導致斑馬魚心室心房發育結構與心臟瓣膜發育異常;有趣的事,將第二十三型絲胺酸蛋白酶被預測出有蛋白脢水解功能的胺基酸突變後,在與反義寡核甘酸一起打入後,突變後的第二十三型絲胺酸蛋白酶可以有效的恢復因抑制第二十三型絲胺酸蛋白酶的蛋白質表現所導致的心室心房發育結構不正常,卻不能恢復心臟瓣膜發育異常,這結果暗示了第二十三型絲胺酸蛋白酶在心臟腔室與心臟瓣膜發育所扮演的角色可能是不同的;經由測量細胞增生狀況(BrdU incorporation assay), 抑制第二十三型絲胺酸蛋白酶的蛋白質表現會影響心肌細胞的生長造成心室心房發育結構不正常;在而組織螢光染色(immunohistochemistry)的結果顯示出在第二十三型絲胺酸蛋白酶表現量受抑制時,位於瓣膜發育處的內皮層細胞進行內皮至間葉細胞形態的轉化(Endothelial to mesenchymal transition)被抑制。為了更進一步研究第二十三型絲胺酸蛋白酶所參與內皮至間葉細胞形態的轉化中的分子機制,我們利用短夾干擾型核醣核酸(shRNA)在人類主動脈內皮層細胞上抑制第二十三型絲胺酸蛋白酶以進行細胞層次的研究;結果指出,抑制第二十三型絲胺酸蛋白酶的表現除了會使得人類動脈內皮層細胞停滯進行乙型轉化生長因子(Transforming growth factor β)所誘發的細胞形態轉化,也會抑制轉錄因子Snail的活性。另一項研究顯示,大量表現人類的第二十三型絲胺酸蛋白酶與Snail在斑馬魚中,可以有效恢復因抑制第二十三型絲胺酸蛋白酶所導致的心臟瓣膜發育異常,且大量表現人類的第二十三型絲胺酸蛋白酶,也可以恢復因抑制第二十三型絲胺酸蛋白酶蛋白質表象而導致表現量降低的Snail表現量。細胞與斑馬魚的實驗結果,證明了在內皮至間葉細胞形態的轉化中,第二十三型絲胺酸蛋白酶位於Snail上游,也證實第二十三型絲胺酸蛋白酶在心臟瓣膜發育功能在演化上是高度被包留。
    本篇研究是第一篇指出第二十三型絲胺酸蛋白酶與Snail上下游關係在心臟瓣膜發育時,內皮至間葉細胞形態的轉化中不可或缺的因子,並且第二十三型絲胺酸蛋白酶的功能在演化上也是高度被保留的;除此之外,在心室、心房發育過程中,本篇也指出第二十三型絲胺酸蛋白酶也會影響心肌細胞的再生。


    Cardiac chamber formation, including cardiac looping and valve formation, is a vital process involving the action of protease during embryonic heart development. Nevertheless, the regulation of these proteases during cardiac chamber formation is poorly understood. Previously, a novel vascular protease, PRSS23, is shown to be highly expressed at the heart during murine cardiac development. However, its functional role in vivo remains unclear to date. We thus aim to characterize the functional role of PRSS23 during cardiac development in this study.
    To investigate the functional role of PRSS23 in cardiogenesis, we used a transgenic zebrafish line with fluorescent labeled vasculatures as the research system. Expression of prss23 was detected in the ventricle, atrium and atrioventricular (AV) canal during zebrafish embryonic development. We found morpholino knockdown of Prss23 caused severe cardiac defects as the developing heart failed to undergo loop formation, accompanied by the malformation of the atrioventricular canal. When zPrss23 DNA with mutative catalytic triad was co-injected with morpholino, the cardiac looping phenotype was rescued, but the valve formation was not. This data implied the malformation of AV canal was not caused by cardiac looping. Then we found morpholino knockdown of Prss23 repressed the cardiomyocyte proliferation during cardiac looping and inhibited the endothelial to mesenchymal transition (EndoMT) at the AV canal during the cardiac valve formation. Moreover, in human aortic endothelial cell-based assays, PRSS23 knockdown by shRNA not only repressed the TGF-β-induced EndoMT but also reduced Snail transcription suggesting Snail signaling is downstream of PRSS23 during EndoMT. We further demonstrated that human PRSS23 and SNAIL could rescue the prss23 morpholino-induced AV canal defect in zebrafish embryos, indicating PRSS23’s function in valvulogenesis is evolutionarily conserved.
    We demonstrated for the first time that the initiation of EndoMT in valvulogenesis depends on PRSS23-Snail signaling, and the functional role of PRSS23 during AV valve formation is evolutionar

    Contents Abstract I 中文摘要 III 誌謝辭 V Contents VII Abbreviations XIII Chemicals and Reagents XIII Specialized terms XV Chapter 1 Introduction 1 1.1 Introduction of heart development 2 1.2 The mechanism of the cardiac looping 2 1.3 The mechanism of the valve formation 3 1.4 Protease is necessary for heart development 5 1.5 Introduction of heart development in zebrafish 6 1.6 Introduction of PRSS23 8 1.7 Specific aim 9 Chapter 2 Materials and methods 11 2.1 Zebrafish lines 12 2.2 Identification and cloning of zebrafish PRSS23 12 2.3 Phylogenetic analysis 12 2.4 Morpholino injection and DNA rescued 13 2.5 Whole-mount in situ hybridization (ISH) 15 2.6 Real-time quantitative polymerase chain reaction (RT-qPCR) and Semi- quantitative polymerase chain reaction (Semi-qPCR) 16 2.7 Immunohistochemistry (IHC) 17 2.8 Bromodeoxyuridine (BrdU) incorporation assay 18 2.9 Cell culture and TGF-β2 induced EndoMT assay 20 2.10 RNAi interferon 21 2.11 Immunocytochemistry (ICC) 22 2.12 Enzyme-linked immunosorbent assay (ELISA) 24 2.13 Image processing and Statistical analysis 24 Chapter 3 Results 26 3.1 Cloning and characterization of Prss23 in zebrafish 27 3.2 Cardiac expression of prss23 in zebrafish 27 3.3 Zebrafish Prss23 mRNA is successfully targeted using Morpholino technology 28 3.4 Prss23 function in zebrafish is essential for heart development 29 3.5 The protease function of Prss23 is necessary for the valvulogenesis, but not for the cardiac looping. 31 3.6 Prss23 knockdown decreases the cardiomyocyte proliferation to cause the defect of the cardiac looping. 32 3.7 PRSS23 is required for EndoMT initiation during cardiac valve formation. 34 3.8 Human PRSS23 expression is successfully reduced by shRNA interference. 37 3.9 Knockdown of PRSS23 suppresses TGF-β2-induced EndoMT in human aortic endothelial cells. 38 3.10 PRSS23 is required for Snail transcription under TGF-β2 stimulation. 39 3.11 Human Snail could rescue the AV canal defects caused by prss23 knockdown in zebrafish. 40 Chapter 4 Discussion and Summary 43 4.1 Significance of this study 44 4.2 PRSS23 is required for cardiac chamber formation 44 4.3 PRSS23 is essential for the TGF-β induced EndoMT 47 4.4 PRSS23 might interact TCF12 to regular Snail transcription 49 4.5 PRSS23 might play a possible role in chromosome modification and remodeling during heart development 51 4.6 Summary 52 Bibliographies 54 Table 1. The primer list of in situ hybridization. 67 Table 2. The primer list of RT-qPCR. 68 Table 3. The primer list of Semi-PCR. 69 Table 4. The primer list of cloning. 70 Table 5. AV canal malformation phenotype frequencies in embryos at 72 h.p.f. 71 Figure 72 Figure 1. Zebrafish Prss23 is conserved among vertebrates. 72 Figure 2. Prss23 transcripts are detected in the zebrafish heart development. 74 Figure 3. Morpholino knockdown of Prss23 in zebrafish embryos. 75 Figure 4. Zebrafish Prss23 is required for cardiac looping and valve formation in AV canal during embryonic development. 77 Figure 5. Zebrafish Prss23 knockdown could not affect vasculogenesis and angiogenesis proceeds. 79 Figure 6. The enzyme function of Prss23 is involved in the cardiac valve formation, but not in the cardiac looping. 80 Figure 7. Prss23 knockdown inhibits the cardiomyocyte proliferation to caused the failure of the cardiac looping. 81 Figure 8. Prss23 knockdown disturbed the expression pattern of bmp4 and notch1b. 83 Figure 9. Prss23 knockdown inhibited EndoMT initiation during atrioventricular valve formation. 85 Figure 10. Knockdown of Prss23 reduced endocardium proliferation during valvulogenesis. 86 Figure 11. PRSS23 expression is down-regulated in HAECs by shRNA interference. 87 Figure 12. Loss of PRSS23 repressed the TGF-β2-induced EndoMT in HAECs. 88 Figure 13. PRSS23 knockdown would inhibit SNAIL transcription but not SMAD2 phosphorylation in HAECs after TGF-β2 stimulation. 90 Figure 14. PRSS23 knockdown did not affect the pSMAD2 locating into nuclei after TGF-β2 treatment. 92 Figure 15. TGF-β2 quickly induces the PRSS23 mRNA expression level in HAECs. 93 Figure 16. Human PRSS23 and Snail can rescue the prss23 morpholino-induced AV endocardiac malformation in zebrafish. 94 Figure 17. Zebrafish notch1 overexpression resulted in the death or deformity in zebrafish embryos. 96 Figure 18. A schematic diagram showing PRSS23’s function in the initiation of EndoMT during cardiac valve formation. 97 Appendix Tables 98 Table A1. The protein-protein interaction list of PRSS23. 98 Appendix figures 99 Figure A1. mRNA and Domain organization map of human PRSS23. 99 Figure A2. Enzyme Activity Curves of GST-PRSS23-P and tPA Substrate. 101 Figure A3. Endogenous PRSS23 in nucleus of MCF-7 cells. 102 Figure A4. Mutation of 257KRK259 reduces nuclear transportation in HEK293T cells. 103 Figure A5. PRSS23 mRNA expresses in ventricle and atrium during mouse cardiac development. 104 Figure A6. Human PRSS23 was highly expresses in heart and endothelial cells. 105 Figure A7. PRSS23 interact with TCF12 in HAECs. 106 Figure A8. TCF12 DNA binding site, E-box, is found in the conserved region of Snail promoter in various vertebrates. 107

    1. Moorman AF, Christoffels VM. Cardiac chamber formation: Development, genes, and evolution. Physiol Rev. 2003;83:1223-1267
    2. Stainier DY. Zebrafish genetics and vertebrate heart formation. Nat Rev Genet. 2001;2:39-48
    3. Srivastava D, Olson EN. A genetic blueprint for cardiac development. Nature. 2000;407:221-226
    4. Chen JN, van Eeden FJ, Warren KS, Chin A, Nusslein-Volhard C, Haffter P, Fishman MC. Left-right pattern of cardiac bmp4 may drive asymmetry of the heart in zebrafish. Development. 1997;124:4373-4382
    5. Jia H, King IN, Chopra SS, Wan H, Ni TT, Jiang C, Guan X, Wells S, Srivastava D, Zhong TP. Vertebrate heart growth is regulated by functional antagonism between gridlock and gata5. Proc Natl Acad Sci U S A. 2007;104:14008-14013
    6. Tanaka M, Chen Z, Bartunkova S, Yamasaki N, Izumo S. The cardiac homeobox gene csx/nkx2.5 lies genetically upstream of multiple genes essential for heart development. Development. 1999;126:1269-1280
    7. Stanley EG, Biben C, Elefanty A, Barnett L, Koentgen F, Robb L, Harvey RP. Efficient cre-mediated deletion in cardiac progenitor cells conferred by a 3'utr-ires-cre allele of the homeobox gene nkx2-5. Int J Dev Biol. 2002;46:431-439
    8. Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene nkx2-5. Genes Dev. 1995;9:1654-1666
    9. Granados-Riveron JT, Pope M, Bu'lock FA, Thornborough C, Eason J, Setchfield K, Ketley A, Kirk EP, Fatkin D, Feneley MP, Harvey RP, Brook JD. Combined mutation screening of nkx2-5, gata4, and tbx5 in congenital heart disease: Multiple heterozygosity and novel mutations. Congenit Heart Dis. 2012;7:151-159
    10. Maitra M, Schluterman MK, Nichols HA, Richardson JA, Lo CW, Srivastava D, Garg V. Interaction of gata4 and gata6 with tbx5 is critical for normal cardiac development. Dev Biol. 2009;326:368-377
    11. Stennard FA, Costa MW, Elliott DA, Rankin S, Haast SJ, Lai D, McDonald LP, Niederreither K, Dolle P, Bruneau BG, Zorn AM, Harvey RP. Cardiac t-box factor tbx20 directly interacts with nkx2-5, gata4, and gata5 in regulation of gene expression in the developing heart. Dev Biol. 2003;262:206-224
    12. Jiang Y, Drysdale TA, Evans T. A role for gata-4/5/6 in the regulation of nkx2.5 expression with implications for patterning of the precardiac field. Dev Biol. 1999;216:57-71
    13. Bruneau BG, Logan M, Davis N, Levi T, Tabin CJ, Seidman JG, Seidman CE. Chamber-specific cardiac expression of tbx5 and heart defects in holt-oram syndrome. Dev Biol. 1999;211:100-108
    14. Laverriere AC, MacNeill C, Mueller C, Poelmann RE, Burch JB, Evans T. Gata-4/5/6, a subfamily of three transcription factors transcribed in developing heart and gut. J Biol Chem. 1994;269:23177-23184
    15. Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S, Conner DA, Gessler M, Nemer M, Seidman CE, Seidman JG. A murine model of holt-oram syndrome defines roles of the t-box transcription factor tbx5 in cardiogenesis and disease. Cell. 2001;106:709-721
    16. Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM. Gata4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev. 1997;11:1048-1060
    17. Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M. The cardiac transcription factors nkx2-5 and gata-4 are mutual cofactors. EMBO J. 1997;16:5687-5696
    18. Reiter JF, Alexander J, Rodaway A, Yelon D, Patient R, Holder N, Stainier DY. Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev. 1999;13:2983-2995
    19. Armstrong EJ, Bischoff J. Heart valve development: Endothelial cell signaling and differentiation. Circ Res. 2004;95:459-470
    20. Combs MD, Yutzey KE. Heart valve development: Regulatory networks in development and disease. Circ Res. 2009;105:408-421
    21. Wagner M, Siddiqui MA. Signal transduction in early heart development (ii): Ventricular chamber specification, trabeculation, and heart valve formation. Exp Biol Med (Maywood). 2007;232:866-880
    22. Romano LA, Runyan RB. Slug is an essential target of tgfbeta2 signaling in the developing chicken heart. Dev Biol. 2000;223:91-102
    23. Wang J, Sridurongrit S, Dudas M, Thomas P, Nagy A, Schneider MD, Epstein JA, Kaartinen V. Atrioventricular cushion transformation is mediated by alk2 in the developing mouse heart. Dev Biol. 2005;286:299-310
    24. Timmerman LA, Grego-Bessa J, Raya A, Bertran E, Perez-Pomares JM, Diez J, Aranda S, Palomo S, McCormick F, Izpisua-Belmonte JC, de la Pompa JL. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes & development. 2004;18:99-115
    25. Niessen K, Fu Y, Chang L, Hoodless PA, McFadden D, Karsan A. Slug is a direct notch target required for initiation of cardiac cushion cellularization. J Cell Biol. 2008;182:315-325
    26. Combs MD, Yutzey KE. Vegf and rankl regulation of nfatc1 in heart valve development. Circ Res. 2009;105:565-574
    27. Chang CP, Neilson JR, Bayle JH, Gestwicki JE, Kuo A, Stankunas K, Graef IA, Crabtree GR. A field of myocardial-endocardial nfat signaling underlies heart valve morphogenesis. Cell. 2004;118:649-663
    28. Shworak NW. Angiogenic modulators in valve development and disease: Does valvular disease recapitulate developmental signaling pathways? Curr Opin Cardiol. 2004;19:140-146
    29. Camenisch TD, Schroeder JA, Bradley J, Klewer SE, McDonald JA. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of erbb2-erbb3 receptors. Nat Med. 2002;8:850-855
    30. Wu Q, Kuo HC, Deng GG. Serine proteases and cardiac function. Biochim Biophys Acta. 2005;1751:82-94
    31. Barnett JV, Desgrosellier JS. Early events in valvulogenesis: A signaling perspective. Birth Defects Res C Embryo Today. 2003;69:58-72
    32. Ratajska A, Cleutjens JP. Embryogenesis of the rat heart: The expression of collagenases. Basic Res Cardiol. 2002;97:189-197
    33. Yan W, Sheng N, Seto M, Morser J, Wu Q. Corin, a mosaic transmembrane serine protease encoded by a novel cdna from human heart. J Biol Chem. 1999;274:14926-14935
    34. Pan J, Hinzmann B, Yan W, Wu F, Morser J, Wu Q. Genomic structures of the human and murine corin genes and functional gata elements in their promoters. J Biol Chem. 2002;277:38390-38398
    35. Yan W, Wu F, Morser J, Wu Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A. 2000;97:8525-8529
    36. Temsah R, Nemer M. Gata factors and transcriptional regulation of cardiac natriuretic peptide genes. Regul Pept. 2005;128:177-185
    37. McGuire PG, Orkin RW. Urokinase activity in the developing avian heart: A spatial and temporal analysis. Dev Dyn. 1992;193:24-33
    38. Gorny KN, Brauer PR. Urokinase regulates embryonic cardiac cushion cell migration without converting plasminogen. Anat Rec. 1999;256:269-278
    39. Song W, Majka SM, McGuire PG. Hepatocyte growth factor expression in the developing myocardium: Evidence for a role in the regulation of the mesenchymal cell phenotype and urokinase expression. Dev Dyn. 1999;214:92-100
    40. Alexander SM, Jackson KJ, Bushnell KM, McGuire PG. Spatial and temporal expression of the 72-kda type iv collagenase (mmp-2) correlates with development and differentiation of valves in the embryonic avian heart. Dev Dyn. 1997;209:261-268
    41. Song W, Jackson K, McGuire PG. Degradation of type iv collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. Dev Biol. 2000;227:606-617
    42. Robbins JR, McGuire PG, Wehrle-Haller B, Rogers SL. Diminished matrix metalloproteinase 2 (mmp-2) in ectomesenchyme-derived tissues of the patch mutant mouse: Regulation of mmp-2 by pdgf and effects on mesenchymal cell migration. Dev Biol. 1999;212:255-263
    43. Enciso JM, Gratzinger D, Camenisch TD, Canosa S, Pinter E, Madri JA. Elevated glucose inhibits vegf-a-mediated endocardial cushion formation: Modulation by pecam-1 and mmp-2. J Cell Biol. 2003;160:605-615
    44. Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res. 2011;91:279-288
    45. Stainier DY, Fishman MC. The zebrafish as a model system to study cardiovascular development. Trends Cardiovasc Med. 1994;4:207-212
    46. Beis D, Bartman T, Jin SW, Scott IC, D'Amico LA, Ober EA, Verkade H, Frantsve J, Field HA, Wehman A, Baier H, Tallafuss A, Bally-Cuif L, Chen JN, Stainier DY, Jungblut B. Genetic and cellular analyses of zebrafish atrioventricular cushion and valve development. Development. 2005;132:4193-4204
    47. Holtzman NG, Schoenebeck JJ, Tsai HJ, Yelon D. Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Development. 2007;134:2379-2386
    48. Hooper JD, Clements JA, Quigley JP, Antalis TM. Type ii transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem. 2001;276:857-860
    49. Chan HS, Chang SJ, Wang TY, Ko HJ, Lin YC, Lin KT, Chang KM, Chuang YJ. Serine protease prss23 is upregulated by estrogen receptor alpha and associated with proliferation of breast cancer cells. PLoS One. 2012;7:e30397
    50. Lin Y-C. Characterization of serine protease 23 and its potential roles in cancer invasion. Institute of Bioinformatics and Structural Biology. 2008;master
    51. Chiang C-H. Characterization of serine protease 23 - screening of substrates and critical residues for enzymatic function. Institute of Bioinformatics and Structural Biology. 2009;master
    52. Wahlberg P, Nylander A, Ahlskog N, Liu K, Ny T. Expression and localization of the serine proteases high-temperature requirement factor a1, serine protease 23, and serine protease 35 in the mouse ovary. Endocrinology. 2008;149:5070-5077
    53. AG BH. Prss23 as a biomaker, therapeutic an diagnostc target. Patent Cooperation Treaty (PCT). 2007
    54. Jin SW, Beis D, Mitchell T, Chen JN, Stainier DY. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development. 2005;132:5199-5209
    55. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203:253-310
    56. Tamura K, Dudley J, Nei M, Kumar S. Mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol. 2007;24:1596-1599
    57. Huang WC, Hsieh YS, Chen IH, Wang CH, Chang HW, Yang CC, Ku TH, Yeh SR, Chuang YJ. Combined use of ms-222 (tricaine) and isoflurane extends anesthesia time and minimizes cardiac rhythm side effects in adult zebrafish. Zebrafish. 2010;7:297-304
    58. Ribeiro I, Kawakami Y, Buscher D, Raya A, Rodriguez-Leon J, Morita M, Rodriguez Esteban C, Izpisua Belmonte JC. Tbx2 and tbx3 regulate the dynamics of cell proliferation during heart remodeling. PLoS One. 2007;2:e398
    59. Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13:952-961
    60. Smith KA, Lagendijk AK, Courtney AD, Chen H, Paterson S, Hogan BM, Wicking C, Bakkers J. Transmembrane protein 2 (tmem2) is required to regionally restrict atrioventricular canal boundary and endocardial cushion development. Development. 2011;138:4193-4198
    61. Butcher JT, Markwald RR. Valvulogenesis: The moving target. Philos Trans R Soc Lond B Biol Sci. 2007;362:1489-1503
    62. Ramsdell AF, Markwald RR. Induction of endocardial cushion tissue in the avian heart is regulated, in part, by tgfbeta-3-mediated autocrine signaling. Dev Biol. 1997;188:64-74
    63. Walsh EC, Stainier DY. Udp-glucose dehydrogenase required for cardiac valve formation in zebrafish. Science. 2001;293:1670-1673
    64. Westin J, Lardelli M. Three novel notch genes in zebrafish: Implications for vertebrate notch gene evolution and function. Dev Genes Evol. 1997;207:51-63
    65. Kokudo T, Suzuki Y, Yoshimatsu Y, Yamazaki T, Watabe T, Miyazono K. Snail is required for tgfbeta-induced endothelial-mesenchymal transition of embryonic stem cell-derived endothelial cells. J Cell Sci. 2008;121:3317-3324
    66. Paruchuri S, Yang JH, Aikawa E, Melero-Martin JM, Khan ZA, Loukogeorgakis S, Schoen FJ, Bischoff J. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-a and transforming growth factor-beta2. Circ Res. 2006;99:861-869
    67. Chi NC, Shaw RM, De Val S, Kang G, Jan LY, Black BL, Stainier DY. Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev. 2008;22:734-739
    68. Garrity DM, Childs S, Fishman MC. The heartstrings mutation in zebrafish causes heart/fin tbx5 deficiency syndrome. Development. 2002;129:4635-4645
    69. Just S, Berger IM, Meder B, Backs J, Keller A, Marquart S, Frese K, Patzel E, Rauch GJ, Katus HA, Rottbauer W. Protein kinase d2 controls cardiac valve formation in zebrafish by regulating histone deacetylase 5 activity. Circulation. 2011;124:324-334
    70. Hurlstone AF, Haramis AP, Wienholds E, Begthel H, Korving J, Van Eeden F, Cuppen E, Zivkovic D, Plasterk RH, Clevers H. The wnt/beta-catenin pathway regulates cardiac valve formation. Nature. 2003;425:633-637
    71. Christoffels VM, Hoogaars WM, Tessari A, Clout DE, Moorman AF, Campione M. T-box transcription factor tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn. 2004;229:763-770
    72. Lee YM, Cope JJ, Ackermann GE, Goishi K, Armstrong EJ, Paw BH, Bischoff J. Vascular endothelial growth factor receptor signaling is required for cardiac valve formation in zebrafish. Dev Dyn. 2006;235:29-37
    73. Jiao K, Kulessa H, Tompkins K, Zhou Y, Batts L, Baldwin HS, Hogan BL. An essential role of bmp4 in the atrioventricular septation of the mouse heart. Genes Dev. 2003;17:2362-2367
    74. Ma L, Lu MF, Schwartz RJ, Martin JF. Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development. 2005;132:5601-5611
    75. Noseda M, McLean G, Niessen K, Chang L, Pollet I, Montpetit R, Shahidi R, Dorovini-Zis K, Li L, Beckstead B, Durand RE, Hoodless PA, Karsan A. Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res. 2004;94:910-917
    76. MacGrogan D, Luna-Zurita L, de la Pompa JL. Notch signaling in cardiac valve development and disease. Birth Defects Res A Clin Mol Teratol. 2011;91:449-459
    77. Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. Cells Tissues Organs. 2007;185:146-156
    78. Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through smads. Annu Rev Cell Dev Biol. 2005;21:659-693
    79. Goumans MJ, van Zonneveld AJ, ten Dijke P. Transforming growth factor beta-induced endothelial-to-mesenchymal transition: A switch to cardiac fibrosis? Trends Cardiovasc Med. 2008;18:293-298
    80. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE. A human protein-protein interaction network: A resource for annotating the proteome. Cell. 2005;122:957-968
    81. Murakami M, Kataoka K, Tominaga J, Nakagawa O, Kurihara H. Differential cooperation between dhand and three different e-proteins. Biochem Biophys Res Commun. 2004;323:168-174
    82. Rivera-Feliciano J, Lee KH, Kong SW, Rajagopal S, Ma Q, Springer Z, Izumo S, Tabin CJ, Pu WT. Development of heart valves requires gata4 expression in endothelial-derived cells. Development. 2006;133:3607-3618
    83. Hu JS, Olson EN, Kingston RE. Heb, a helix-loop-helix protein related to e2a and itf2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol. 1992;12:1031-1042
    84. Peinado H, Olmeda D, Cano A. Snail, zeb and bhlh factors in tumour progression: An alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7:415-428
    85. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871-890
    86. Barrallo-Gimeno A, Nieto MA. The snail genes as inducers of cell movement and survival: Implications in development and cancer. Development. 2005;132:3151-3161
    87. Cano A, Portillo F. An emerging role for class i bhlh e2-2 proteins in emt regulation and tumor progression. Cell adhesion & migration. 2010;4:56-60
    88. Sobrado VR, Moreno-Bueno G, Cubillo E, Holt LJ, Nieto MA, Portillo F, Cano A. The class i bhlh factors e2-2a and e2-2b regulate emt. Journal of cell science. 2009;122:1014-1024
    89. Hsieh Y-S. Prss23 is essential for snail-dependent endothelial to mesenchymal transition via tcf12. Institute of Bioinformatics and structural Biology. 2011;master
    90. Hariri F, Nemer M, Nemer G. T-box factors: Insights into the evolutionary emergence of the complex heart. Ann Med. 2011
    91. Ragkousi K, Beh J, Sweeney S, Starobinska E, Davidson B. A single gata factor plays discrete, lineage specific roles in ascidian heart development. Dev Biol. 2011;352:154-163
    92. Bruneau BG. Chromatin remodeling in heart development. Curr Opin Genet Dev. 2010;20:505-511
    93. Delgado-Olguin P, Takeuchi JK, Bruneau BG. Chromatin modification and remodeling in heart development. ScientificWorldJournal. 2006;6:1851-1861
    94. Farrants AK. Chromatin remodelling and actin organisation. FEBS Lett. 2008;582:2041-2050
    95. Liu J, Zhang Z, Bando M, Itoh T, Deardorff MA, Li JR, Clark D, Kaur M, Tatsuro K, Kline AD, Chang C, Vega H, Jackson LG, Spinner NB, Shirahige K, Krantz ID. Genome-wide DNA methylation analysis in cohesin mutant human cell lines. Nucleic Acids Res. 2010;38:5657-5671
    96. Muto A, Calof AL, Lander AD, Schilling TF. Multifactorial origins of heart and gut defects in nipbl-deficient zebrafish, a model of cornelia de lange syndrome. PLoS Biol. 2011;9:e1001181
    97. Jahnke P, Xu W, Wulling M, Albrecht M, Gabriel H, Gillessen-Kaesbach G, Kaiser FJ. The cohesin loading factor nipbl recruits histone deacetylases to mediate local chromatin modifications. Nucleic Acids Res. 2008;36:6450-6458
    98. Ouyang KJ, Woo LL, Ellis NA. Homologous recombination and maintenance of genome integrity: Cancer and aging through the prism of human recq helicases. Mech Ageing Dev. 2008;129:425-440
    99. Yang J, Murthy S, Winata T, Werner S, Abe M, Prahalad AK, Hock JM. Recql4 haploinsufficiency in mice leads to defects in osteoblast progenitors: Implications for low bone mass phenotype. Biochem Biophys Res Commun. 2006;344:346-352
    100. Mann MB, Hodges CA, Barnes E, Vogel H, Hassold TJ, Luo G. Defective sister-chromatid cohesion, aneuploidy and cancer predisposition in a mouse model of type ii rothmund-thomson syndrome. Hum Mol Genet. 2005;14:813-825
    101. Grabek KR, Karimpour-Fard A, Epperson LE, Hindle A, Hunter LE, Martin SL. Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve atp for winter heterothermy. Physiol Genomics. 2011;43:1263-1275
    102. Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT, Ohgi KA, Benner C, Garcia-Bassets I, Aggarwal AK, Desai A, Dorrestein PC, Glass CK, Rosenfeld MG. Phf8 mediates histone h4 lysine 20 demethylation events involved in cell cycle progression. Nature. 2010;466:508-512
    103. O'Brien RN, Shen Z, Tachikawa K, Lee PA, Briggs SP. Quantitative proteome analysis of pluripotent cells by itraq mass tagging reveals post-transcriptional regulation of proteins required for es cell self-renewal. Mol Cell Proteomics. 2010;9:2238-2251
    104. Kawabe T, Tsuyama N, Kitao S, Nishikawa K, Shimamoto A, Shiratori M, Matsumoto T, Anno K, Sato T, Mitsui Y, Seki M, Enomoto T, Goto M, Ellis NA, Ide T, Furuichi Y, Sugimoto M. Differential regulation of human recq family helicases in cell transformation and cell cycle. Oncogene. 2000;19:4764-4772
    105. Xu X, Liu Y. Dual DNA unwinding activities of the rothmund-thomson syndrome protein, recq4. EMBO J. 2009;28:568-577

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE