簡易檢索 / 詳目顯示

研究生: 吳大山
Wu, Da-Shan
論文名稱: 吸附助效之乙醇蒸氣重組反應器操作參數之數值分析
Numerical analysis of the performance of sorption enhanced ethanol steam reformer for varied operation parameters
指導教授: 許文震
Sheu, Wen-Jenn
口試委員: 陳炎洲
Chen, Yen-Chou
李隆正
Li, Lung-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 54
中文關鍵詞: 蒸氣重組乙醇吸附助效數值分析操作參數
外文關鍵詞: ethanol, steam reforming, numerical analysis, operation parameters, sorption enhanced
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為,探討吸附助效之乙醇蒸氣重組反應器理想之工作區間,其中包括:吸附劑和催化劑之配比、反應器壁溫、各空間速度和前後催化劑非均勻分布方式,所能帶給吸附助效之乙醇蒸氣重組反應器,在出口產品氣組成、氫氣產量以及破出時間上的影響。本次研究使用COMSOL Multiphysics 5.4軟體進行數值模擬與分析,主要將以2- D軸對稱模型,對反應管之熱傳、多孔流場及物種特性進行建模。在不同壁溫的差異上,幾乎都能看到一個單調上升的情況,高壁溫導致更高的乙醇轉化率、氫氣莫爾分率和一氧化碳莫爾分率,反之則甲烷莫爾分率上升伴隨低的乙醇轉化率、氫氣莫爾分率和一氧化碳莫爾分率,這樣的情況也是符合我們在文獻中所看到的情形。在Sorbent/Catalysts重量比1-6之間,我們找到了反應器最高效率的區間為1.5至2.5,而產氫量則是Sorbent/Catalysts越高越多,不過會隨Sorbent/Catalysts的增加趨緩。WHSV = 4.32 h-1為本模型中,能夠產出最大量氫氣的臨界,更大的流速下,產氫量的增加停滯。在模型R2中我們討論分段配置催化劑的差異,在催化劑增量配於後段時,氫氣莫爾分率一致下降。將催化劑增量至前段,能在幾乎相同的產氫量下,提升氫氣的分率。在乙醇蒸氣重組和吸附反應的交互關係中,我們認為尋找適當的工作區間,對於讓吸附反應不至於成為瓶頸是重要的,如此才能獲得高純度的氫氣。


    The purpose of this study is to investigate the ideal operating windows of sorption enhanced ethanol steam reformer by trying different sorbent/catalysts ratios, wall temperature of the reactor, space velocity and different front to back end sorbent distribution to see what can be brought to the end product gas composition, hydrogen production and breakthrough time. In the present simulation, we use COMSOL Multiphysics 5.4 to build a 2-D axisymmetric model. Implementing heat transfer, porous media flow field, and species mass transfer modules within the software to this model. At different wall temperatures, the monotonous rise can be seen almost throughout the temperature from 673K to 1073K. Higher wall temperature leads to higher ethanol conversion, H2, and CO mole fraction. On the contrary, lowering the wall temperature sees increasing in CH4 mole fraction in end products and decreasing in ethanol conversion, H2, and CO mole fraction in end products, this is also in line with what we have seen in the literature. Between the sorbent/catalysts weight ratio 1-6, we found the highest efficiency range of the reactor is 1.5 to 2.5. H2 production increases as sorbent/catalysts go higher, however, this trend slows down in the meantime. At WHSV = 4.32 h-1, it is the critical point for the maximum amount of hydrogen that can be produced in this model. For higher flow rates, the increase in hydrogen production stagnates. As more catalysts is moved to the back part of the model R2 more, H2 content drop can be seen across the board. Taking part of catalysts to the front part of the reactor can be beneficial to H2 content with almost equal amount of total hydrogen production. The operating window for the sorption reaction to not be the bottleneck of the system is the key to high H2 content product gas.

    摘要----------------------------------1 Abstract-----------------------------2 第一章 緒論--------------------------6 1.1 前言--------------------------6 1.2 文獻回顧----------------------7 1.2.1 蒸氣重組------------------------7 1.3.2 氧化鈣吸附--------------------10 1.3 研究目的---------------------12 第二章 數值方法---------------------13 2.1 數值方法-------------------------13 2.1.1 軟體概述-----------------------13 2.1.2 反應器模型---------------------13 2.2 基本假設-------------------------15 2.3 統御方程式-----------------------16 2.3.1 質量守恆方程式-----------------16 2.3.2 動量守恆方程式-----------------16 2.3.3 能量方程式--------------------17 3.2.4 物質方程式--------------------18 2.4 化學反應-------------------------18 2.4.1 乙醇蒸氣重組反應----------------18 2.4.2 氧化鈣吸附反應------------------19 2.5 邊界條件------------------------20 第三章 結果與討論-------------------22 3.1 模擬驗證-------------------------22 3.2 不同吸附劑與催化劑比例之影響------25 3.2.1 壁溫873K----------------------25 3.2.2 壁溫1073K---------------------36 3.2.3 壁溫673K----------------------41 3.3 前後催化劑非均勻分布--------------44 第四章 結論與未來工作------------------50 4.1結論------------------------------50 4.2未來建議---------------------------51 參考文獻------------------------------52

    [1] “2018 能源局年報.” .能源統計年報 - 綜合類 - 經濟部能源局(Bureau of Energy, Ministry of Economic Affairs, R.O.C.)全球資訊網
    [2] L.Mojović et al., “Progress in the production of bioethanol on starch-based feedstocks,” Chem. Ind. Chem. Eng. Q., vol. 15, no. 4, pp. 211–226, 2009, doi: 10.2298/CICEQ0904211M.
    [3] M.Erabi andA.Goshadrou, “Bioconversion of Glycyrrhiza glabra residue to ethanol by sodium carbonate pretreatment and separate hydrolysis and fermentation using Mucor hiemalis,” Ind. Crops Prod., vol. 152, no. September 2019, p. 112537, 2020, doi: 10.1016/j.indcrop.2020.112537.
    [4] J.Xu andG. F.Froment, “Methane steam reforming: Intrisic Kinetics,” AIChE J., vol. 35, no. 1, pp. 88–96, 1989, doi: 10.1002/aic.690350109.
    [5] J.Sun, X. P.Qiu, F.Wu, andW. T.Zhu, “H2 from steam reforming of ethanol at low temperature over Ni/Y2O3 and Ni/La2O3 catalysts for fuel-cell application,” Int. J. Hydrogen Energy, vol. 30, no. 4, pp. 437–445, 2005, doi: 10.1016/j.ijhydene.2004.11.005.
    [6] B.Journal, G. M.Zanin, andF. F.Moraes, “PARAMETRIC STUDY OF HYDROGEN PRODUCTION FROM ETHANOL STEAM REFORMING IN A MEMBRANE,” vol. 30, no. 02, pp. 355–367, 2013.
    [7] R.Ma, B.Castro-Dominguez, A. G.Dixon, andY. H.Ma, “CFD study of heat and mass transfer in ethanol steam reforming in a catalytic membrane reactor,” Int. J. Hydrogen Energy, vol. 43, no. 15, pp. 7662–7674, 2018, doi: 10.1016/j.ijhydene.2017.08.173.
    [8] B.Dou et al., “Hydrogen production by sorption-enhanced chemical looping steam reforming of ethanol in an alternating fixed-bed reactor: Sorbent to catalyst ratio dependencies,” Energy Convers. Manag., vol. 155, no. October 2017, pp. 243–252, 2018, doi: 10.1016/j.enconman.2017.10.075.
    [9] K. R.Rout andH. A.Jakobsen, “A numerical study of pellets having both catalytic- and capture properties for SE-SMR process: Kinetic- and product layer diffusion controlled regimes,” Fuel Process. Technol., vol. 106, pp. 231–246, 2013, doi: 10.1016/j.fuproc.2012.07.029.
    [10] K. R.Rout, J.Fermoso, D.Chen, andH. A.Jakobsen, “Kinetic rate of CO2 uptake of a synthetic Ca-based sorbent: Experimental data and numerical simulations,” Fuel, vol. 120, pp. 53–65, 2014, doi: 10.1016/j.fuel.2013.12.011.
    [11] 郭奐廷(2018年10月)。使用捕獲劑加強乙醇重組產氫反應之參數評估。「第十三屆氫能與燃料電池學術研討會暨第五屆台灣能源學會年會」發表之論文,元智大學。
    [12] M.S. Phanikumar, R.L. Mahajan. Non-Darcy natural convection in high porosity metal Foams, Int. J. Heat Mass Transfer 45 (2002) 3781-3793.
    [13] J.A. Francesconi, M.C. Mussati, P.A. Aguirre. Analysis of design variables for water-gas-shift reactors by model-based optimization, J Power Sources 173 (2007) 467-477.
    [14] B.E. Poling, J.M. Prausnitz, J.P. O’Connell.The Properties of Gases and Liquids, McGraw-Hill, New York, 2001.
    [15] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., New York: John Wiley & Sons, 2002..
    [16] M.Gasik, “Materials for fuel cells,” Mater. Fuel Cells, no. March, pp. 1–498, 2008, doi: 10.1533/9781845694838.
    [17] CRC Handbook of Chemistry and Physics - 97th Edition (2016)

    [18] D. S.Smith et al., “Thermal conductivity of porous materials,” J. Mater. Res., vol. 28, no. 17, pp. 2260–2272, 2013, doi: 10.1557/jmr.2013.179
    [19] P. D.Vaidya andA. E.Rodrigues, “Kinetics of steam reforming of ethanol over a Ru/Al2O 3 catalyst,” Ind. Eng. Chem. Res., vol. 45, no. 19, pp. 6614–6618, 2006, doi: 10.1021/ie051342m..
    [20] M.Xu, E.Iglesia, C. R.Apestegu, D. I.Cosimo, andE. T.Al, “Structure and Surface and Catalytic Properties of Mg-Al Basic Oxides,” J. Catal., vol. 178, pp. 499–510, 1998.
    [21] C.Montero, A.Remiro, P. L.Benito, J.Bilbao, andA. G.Gayubo, “Optimum operating conditions in ethanol steam reforming over a Ni/La2O3-ΑAl2O3 catalyst in a fluidized bed reactor,” Fuel Process. Technol., vol. 169, no. October 2017, pp. 207–216, 2018, doi: 10.1016/j.fuproc.2017.10.003.
    [22] H. R.Vergara et al., “Effect of metal content on ethanol decomposition over Ni-Co catalysts supported on La-Ce oxides,” Materials (Basel)., vol. 13, no. 3, 2020, doi: 10.3390/ma13030759.
    [23] K.Wang et al., “Effect of support on hydrogen production from chemical looping steam reforming of ethanol over Ni-based oxygen carriers,” Int. J. Hydrogen Energy, vol. 41, no. 39, pp. 17334–17347, 2016, doi: 10.1016/j.ijhydene.2016.07.261.

    QR CODE